New Receptors and Radioactively Labeled Molecules Could Provide Useful Tools for Research and Medicine
Genetically modifying neurons to enable scientists and clinicians to influence brain activity probably sounds like the stuff of science fiction. However, the technology has existed for more than a decade, allowing scientists to make important leaps in understanding how neurons communicate with one another in healthy individuals and those with psychological and neurological conditions. What’s more, recent improvements to these tools developed by researchers led by IRP investigator Mike Michaelides, Ph.D., may allow neurologists to use them to deliver drugs to just the right brain cells to treat those ailments effectively without the side effects caused by current treatments.
This past January marked the one-year anniversary of NIH’s role in addressing COVID-19. For many, it has been a year of hardships and grief, but the race to subdue this new virus has also tapped into the resolve and ingenuity of IRP staff who have already helped create diagnostic tests, vaccines, and therapeutics. Let's take a look back to see a few examples of how IRP scientists and staff have contributed to the fight against COVID-19, as well as how the pandemic has changed life at the NIH.
Even in the midst of a global pandemic, life at NIH goes on. IRP researchers continue to run experiments, publish scientific papers, and train the next generation of scientists, including the many graduate students performing research in IRP labs through the Graduate Partnership Program. On February 17 and 18, more than 100 of these scientists-in-training presented their work virtually at the NIH’s 17th annual Graduate Student Research Symposium. Like last year’s entirely online Postbac Poster Day, the event overcame the constraints of COVID-19 precautions to showcase a broad range of research, including several studies focused on the novel coronavirus.
NIH Scientist’s Decoy Virus Revolutionizes Cervical Cancer Prevention
The National Academy of Sciences (NAS), established in 1863, is comprised of the United States’ most distinguished scientific scholars, including nearly 500 Nobel Prize winners. Members of the NAS are elected by their peers and entrusted with the responsibility of providing independent, objective advice on national matters related to science and technology in an effort to advance innovations in the United States.
IRP senior investigator John T. Schiller, Ph.D., was elected to the NAS in 2020 in recognition of a career that has produced numerous discoveries about human papillomaviruses (HPV), sexually transmitted infections that cause genital warts and are responsible for most cases of cervical cancer. His decades-long partnership with fellow IRP senior investigator Douglas R. Lowy, M.D., who was elected to the NAS in 2009, has yielded a deeper understanding of how HPV infects and damages cells and led to the creation of the first vaccines to prevent HPV infection.
Custom-Built Molecule May Improve On Its Natural Counterpart
Ten years ago, a young woman from Chicago came to the National Institutes of Health with a rare genetic condition. A mutation in her DNA was making her metabolic system malfunction, causing levels of fat molecules called triglycerides in her blood to skyrocket far out of the normal range. This triggered inflammation in her pancreas, a painful and potentially life-threatening condition known as pancreatitis. She couldn’t understand why there wasn’t any kind of treatment to help her.
IRP senior investigator Alan T. Remaley, M.D., Ph.D., took on the challenge with the help of Anna Wolska, Ph.D., a research fellow in his lab. Dr. Remaley leads the Lipoprotein Metabolism Section in the National Heart, Lung, and Blood Institute (NHLBI), where he and Dr. Wolska study lipoproteins, small particles that transport fats such as cholesterol and triglycerides through the bloodstream to be broken down and used by cells for energy. Their efforts to help that young woman ultimately led to the discovery — published last January — of a new strategy for reducing triglycerides in order to treat serious ailments like pancreatitis and heart disease.
Biomarker Discovery Could Aid Diagnosis and Therapeutic Development
Our cells can’t afford to be wasteful, so they prefer to recycle broken components. However, when the mitochondria that provide their energy are damaged beyond repair, cells may have no choice but to throw them out. New IRP research suggests that more of this mitochondrial debris floats in the blood of patients with Alzheimer’s disease, potentially providing an easy, cost-effective way to diagnose or even possibly predict the illness.
IRP Researcher Nancy Sullivan Led Development of Cutting-Edge Treatment
Twenty-four years before the novel coronavirus began spreading in Wuhan, China, an outbreak of another deadly virus burned through the city of Kikwit in what is now the Democratic Republic of Congo. Between January and August of 1995, 316 people are thought to have contracted Ebola, and 252 of them died. More than a decade later, a team of NIH infectious disease scientists would track down one of the survivors and use a sample of the individual’s blood to produce one of the first effective treatments for Ebola.
IRP Study Could Help Identify Women at Greater Risk for Fertility Problems
As the calendar page turned from 2020 to 2021, many people adopted major lifestyle changes like healthier eating or significantly increasing their physical activity. While these New Year’s resolutions will likely improve their overall health, they could also wreak havoc on the reproductive cycles of a small set of women. New IRP research sheds light on the genetic factors that make some women susceptible to diet- or exercise-induced disruptions to their reproductive systems.
Artificial Intelligence Simplifies Cervical Cancer Screening
Even though cervical cancer is considered one of the most preventable forms of cancer, it remains a serious and deadly scourge for many across the world. A computer algorithm designed to quickly and easily identify pre-cancerous changes using a regular smartphone may change that.
“The point of everything that we do and have done in the last 40 years is to understand something deeply so that we can invent simple tools to use,” says IRP senior investigator, Mark Schiffman, M.D., M.P.H. To that end, he and collaborators in the National Cancer Institute (NCI) and the National Library of Medicine (NLM), in collaboration with the Global Health Labs and Unitaid, developed and are now testing a machine learning-based approach to screening for cervical cancer, with promising results.
NIH Researcher Recognized for Contributions to Structural Biology Techniques
The National Academy of Sciences (NAS), established in 1863, is comprised of the United States’ most distinguished scientific scholars, including nearly 500 Nobel Prize winners. Members of the NAS are elected by their peers and entrusted with the responsibility of providing independent, objective advice on national matters related to science and technology in an effort to advance innovations in the United States.
IRP senior investigator Robert Tycko, Ph.D., was one of two NIH researchers elected to the NAS in 2020, an honor he hopes will give him the opportunity to help other scientists and improve the way science is done.
This page was last updated on Friday, January 14, 2022