First-Trimester Blood Analysis Could Enable Earlier, More Effective Intervention
Imagine a world in which pregnant women routinely travel to places of healing and meet with wise sages who examine a bit of their blood to divine when their babies will be born. While this may sound like something out of Greek mythology, it may soon become a reality, as IRP researchers have developed a test that was able to use blood samples taken early in pregnancy to identify women who would later deliver their babies prematurely.
NIH History Office Explores Life During a Pandemic
The NIH has played a critical role in supporting research and therapeutic development aimed at curbing the spread of the novel coronavirus that causes COVID-19. The people doing that important work have had their lives changed by the pandemic in many ways. For that reason, the Office of NIH History and Stetten Museum has launched an initiative to encourage NIH employees and volunteers to share their professional and personal experiences during the COVID-19 pandemic. These contributions will be the primary source material future historians will use to understand how NIH fared and adapted at this critical time.
‘Silicon Valley Nobel’ Recognizes Groundbreaking Parkinson’s Disease Research
It can be easy to underestimate the value of so-called ‘basic science’ that doesn’t appear, upon first glance, to have clear therapeutic applications. One of the hidden strengths of this sort of work is its ability to link seemingly disparate areas of scientific inquiry by identifying commonalities between the structure or behavior of different biological molecules. By following these unexpected connections over the course of his career, IRP senior investigator Richard Youle, Ph.D., has made critical discoveries about Parkinson’s disease — research that this year earned him the prestigious Breakthrough Prize in Life Sciences.
Mouse Study Suggests Common Fungus Could Worsen Respiratory Infections
Throughout the COVID-19 pandemic, both scientists and the media have focused on the factors that influence who experiences mild symptoms or none at all and who faces potentially life-threatening consequences from the disease. Other respiratory viruses like the flu also have widely varying effects on different patients. New IRP research has found that exposure to a common variety of mold primes the immune system to overreact to the flu virus, dramatically increasing the illness’s severity.
Future Physician-Scientists Spent a Year in IRP Labs
Many doctors not only treat patients directly, but also make valuable contributions to research that will improve medical care in the future. Each one of these talented ‘physician-scientists’ began his or her research career under the guidance of a more senior scientist. At the NIH, the Medical Research Scholars Program (MRSP) provides just such an experience to promising young medical students from all across the United States.
Mouse Study Identifies Neurological Obstacle to Dietary Improvements
Every morning, thousands of Americans wake up intending to eat more healthfully, only to find themselves chowing down on a greasy burger at dinnertime. In addition to the many biological and socioeconomic obstacles to healthy eating, a salad can just plain seem unappealing compared to a plate of crispy fries. According to new IRP research, a high-fat diet can dramatically alter how the brain responds to food in ways that make a more wholesome meal less enticing and satisfying.
Program Boosts Initiatives Supporting Researchers Across NIH
From Superbowl-winning football teams to comic book cohorts like The Avengers, combining the efforts of multiple talented individuals is a proven strategy for achieving remarkable results. It may come as no surprise, then, that the NIH’s Intramural Research Program (IRP) strongly encourages collaborations that breach the boundaries of its 24 Institutes and Centers. One example of these efforts is the Director’s Challenge Innovation Awards Program, which since 2009 has funded high-impact scientific projects that bring together researchers from across the IRP.
Study Also Reveals Immunotherapy’s Target on Cancer Cells
In the 1995 film The Usual Suspects, Kevin Spacey’s con man character famously remarks, “The greatest trick the Devil ever pulled was convincing the world he didn't exist.” The same could be said of cancer, which somehow persuades the body it is not a threat. Cutting-edge treatments called immunotherapies remove this façade and encourage the immune system to attack cancer cells. New IRP research in mice has demonstrated the promise of a new immunotherapy for treating ovarian cancer and identified a marker on cancer cells that could help clinicians identify patients who are most likely to benefit from the therapy.
IRP Leverages Supercomputing to Combat Coronavirus
Over the past six months, a tiny virus has completely upended life in the United States and many other countries. To combat this microscopic threat, some IRP researchers have turned to a tool the size of a small building.
Biowulf, the NIH’s supercomputer, is supporting more than a dozen different IRP research projects focused on the novel coronavirus. As the world’s most powerful supercomputer solely dedicated to biomedical research, Biowulf allows scientists to analyze data and run simulations at unprecedented speed. Two weeks ago, a blog post described how IRP investigators are using Biowulf to elucidate the structure of the novel coronavirus and simulate how potential therapeutics might interact with it. Picking up where that post left off, this blog will explore the application of Biowulf to important questions about the spread of COVID-19 and the way that its genes, along with our own, might influence its impact on the body.
Experimental Treatment Curbs Autoimmune Eye Disease in Mice
Our cells produce a wide range of chemicals necessary for good health, but when they cannot manufacture enough of these substances, scientists can use cells cultivated in their labs to pick up the slack. In a promising example of this approach, IRP scientists stimulated lab-grown immune cells to produce tiny bundles of an important anti-inflammatory molecule and used those packages to successfully treat a potentially blinding autoimmune disease in mice.
This page was last updated on Friday, January 14, 2022