Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

IRP Discoveries

Psychological Stress Damages Brain’s Blood Vessels

Mouse Study Illuminates Potential Mechanism Behind Mood and Anxiety Disorders

Tuesday, July 14, 2020

red blood cells flowing through a blood vessel

Millions of Americans suffered from depression and anxiety even before COVID-19 began upending their lives. To make matters worse, the stresses of living through a pandemic might not only worsen mental health but could also wreak havoc on the brain itself. New IRP research has found that psychological stress damages blood vessels in the brains of mice and dramatically alters the behavior of genes in certain blood vessel cells.

A Multi-Front Effort to Combat Coronavirus

IRP Research Examines Pandemic From All Angles

Tuesday, July 7, 2020

scientist working in the lab

The sheer number of labs and wide variety of scientific perspectives in the IRP make it particularly well-suited to combating a disease like COVID-19, which is affecting patients’ health and the world around them in a huge number of ways. IRP researchers specializing in psychology, genetics, epidemiology, and many other disciplines are pursuing an array of strategies to learn more about the novel coronavirus.

Facing Daytime Discrimination Linked to Sleep Struggles

IRP Study Examines Overlooked Contributor to Racial Health Disparities

Tuesday, June 23, 2020

African American woman sleeping

Recent news coverage of the deaths of George Floyd, Ahmaud Arbery, and Breonna Taylor, along with statistics reporting startlingly disproportionate death rates among black Americans infected with COVID-19, have made it clear that racial biases can be a matter of life and death. Meanwhile, it can be easy to overlook other, more subtle ways that discrimination can affect health, such as new IRP research that links instances of discrimination to poor sleep.

Pandemic Brings All Hands on Deck

IRP Investigators Begin Hundreds of New Coronavirus-Related Studies

Monday, June 15, 2020

coronavirus particles (gold) emerging from an infected cell

Within just a few months after COVID-19 began spreading in the United States, IRP researchers had already made numerous important contributions to the fight against the deadly virus. Scientific knowledge about the disease continues to expand at a unprecedented pace, and the IRP will continue to play a major role in this effort over the coming months and years. In fact, nearly 300 new intramural research projects related to the novel coronavirus are currently starting up or have already begun.

Dietary Supplement Powers Alzheimer’s-Afflicted Neurons

Mouse Study Supports Potential of Ketone-Elevating Treatment

Tuesday, June 2, 2020

fuel gauge showing empty

Whether from candy, soda, or fruit, sugar is the preferred source of sustenance for many people, and also for their brains. However, in patients with Alzheimer's disease, brain cells are less capable of turning sugar into energy. New IRP research provides evidence that this problem and the cognitive symptoms it causes could be partially solved by providing the brain with an alternative fuel.

A Long Tradition of Vaccine Breakthroughs

IRP Vaccine Research Stretches Back to the NIH’s Birth

Monday, May 18, 2020

Dr. Meyer (left) and Dr. Parkman (right), along with fellow NIAID scientist Hope Hopps, inspect a culture of the virus that causes rubella

Over the past few months, the world has gained a new appreciation for the long, difficult process of producing vaccines as it waits anxiously for one that will provide protection from the novel coronavirus. With the NIH Vaccine Research Center’s efforts to develop a COVID19 vaccine drawing a huge amount of media attention, it is easy to forget that the IRP has been making vital contributions to vaccine development for more than 100 years. These efforts have helped produce vaccinations for smallpox, rubella, hepatitis A, whooping cough, human papillomavirus (HPV), and several other diseases. Read on for a visual journey through the history of IRP vaccine research. 

Gene Editing Reveals Potential Cancer Treatment Target

Scientists Parse Wide-Ranging Effects of Endometrial Cancer Mutation

Tuesday, May 12, 2020

a piece of DNA being removed from a DNA molecule

The so-called ‘butterfly effect’ supposes that a butterfly flapping its wings in Brazil can cause a tornado in Texas. While the jury is still out on insect-induced natural disasters, it is clear that a single genetic mutation can have wide-ranging and unexpected consequences throughout a cell. By examining the ripple effects caused by changes in a particular gene, IRP researchers have identified a potential treatment target for a particularly deadly variety of cancer.

Cellular Therapy Could Soothe Sarcoidosis

Cells From Bone Marrow Calm Damaging Immune Response

Tuesday, April 28, 2020

cells

In patients with the inflammatory disease sarcoidosis, the body’s own immune cells rampage around the body like The Incredible Hulk set loose in a city, attacking both harmful pathogens and our own tissues. However, just like the Black Widow can calm The Hulk down and return him to human form in the Avengers films, cells isolated from our bone marrow may be able to change certain immune cells from a damaging state to a benign one, according to new IRP research.

IRP Researchers Tackle Coronavirus Crisis

New Studies Will Help Efforts to Contain and Treat COVID-19

Monday, April 20, 2020

coronavirus in a patient sample

Most of the time, science is a slow process, with many experiments taking years to yield results. However, as endeavors like the Manhattan Project have shown, scientists can dramatically accelerate the pace of discovery when necessary. Over the past few months, the novel coronavirus pandemic has spurred a burst of research from scientists around the world, including numerous IRP studies. Read on for a round-up of the latest IRP COVID-19 research and learn how IRP investigators are assisting in the fight against the novel coronavirus.

Cellular Self-Destruct Tied to Type 2 Diabetes

Study Suggests New Treatment Strategy for Increasingly Common Disease

Monday, April 6, 2020

a cell undergoing apoptosis

In the classic sci-fi film Alien, the protagonist attempts to destroy the titular monster by triggering the self-destruct mechanism on her spaceship. Our cells also sometimes need to destroy themselves in order to circumvent threats like cancer, but uncontrolled cell death can lead to disease. New IRP research suggests that preventing certain cells in the pancreas from tripping their self-destruct switch could help relieve the symptoms of type 2 diabetes.

  • First page« First
  • Previous page‹ Previous
  • …
  • Page 1212
  • Page 1313
  • Page 1414
  • Page 1515
  • Current page16
  • Page 1717
  • Page 1818
  • Page 1919
  • Page 2020
  • …
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search