Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • No Tech? No Problem!
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

IRP Discoveries

To Boost Learning, Timing May Be Everything

New Strategy Could Enhance Benefits of Therapeutic Brain Stimulation

Tuesday, October 19, 2021

person holding a stopwatch

Electricity can do crazy things to the brain. While it can’t bring back the dead à la Frankenstein or give you new memories like in Total Recall, many scientists believe electrical stimulation could one day help patients with movement or memory problems regain those capabilities. New IRP research bolsters this idea by showing that a brain stimulation technology called transcranial magnetic stimulation (TMS) significantly boosts motor skill learning when precisely administered during specific periods of brain activity.

Wearable Tech Tracks Ebbs and Flows of Bipolar Disorder

Research Suggests Sleep- and Activity-Based Approaches to Treatment

Tuesday, October 5, 2021

women wearing a fitness tracker

Mental Illness Awareness Week, observed this year from October 3 through 9, brings attention and support to the many patients and families who are coping with a variety of psychological conditions. Although an estimated 20 percent of U.S. adults and nearly 17 percent of youth have some type of mental health ailment, these conditions are still not well understood. However, research conducted at the National Institute of Mental Health (NIMH) is transforming our knowledge of one such mental health condition that affects more than two million Americans: bipolar disorder.

Study Explores Sex Differences in Flu

Differences in Flu-Fighting Antibodies Could Explain Women’s Greater Susceptibility

Tuesday, September 28, 2021

sick woman and man

It is well-known that COVID-19 infections are more often life-threatening in the elderly and individuals with chronic medical conditions like obesity, but the novel coronavirus isn’t the only infectious disease that more severely affects certain groups of people. A new IRP study explored a possible biological reason why women tend to experience worse flu infections and suggests a way to potentially improve the effectiveness of flu vaccines for everyone.

Older Cells Make for Riskier Transplants

Examining Molecular Markers of Aging Could Improve Patient Outcomes

Tuesday, September 14, 2021

old clock

In 2003, 92-year-old Fauja Singh ran the Toronto Waterfront Marathon in slightly under six hours, a feat that many people decades younger could not accomplish. Such examples reveal the problems with making assumptions about a person’s health based solely on age. Similarly, new IRP research suggests that assessing cellular characteristics associated with aging, rather than a person’s chronologic age in years, could improve outcomes for the more than 20,000 patients who receive bone marrow or blood stem cell transplants each year.

Tiny Molecules Have Big Potential for Treating Eye Diseases

Approach Could Protect or Even Regenerate Neurons in Eye and Spinal Cord

Tuesday, August 24, 2021

eye

At the end of Aesop’s fable The Lion and the Mouse, the titular rodent saves his much larger friend from a hunter’s trap. Just like Aesop, scientists know well that even something tiny and often overlooked can lend a helping hand. Extremely short strands of genetic material called microRNAs, for instance, could make for useful therapeutic targets for glaucoma and other degenerative eye ailments, according to new IRP research.

Explosive Blasts Wreak Havoc in Inner Ear

New Study Hones in on Causes of Hearing and Balance Problems

Tuesday, August 3, 2021

explosion

The US military presence in Afghanistan is coming to an end, yet the soldiers involved in the conflict will continue to experience its repercussions well into the future. Among other health effects, encountering the explosive devices widely deployed in the conflict can cause long-lasting hearing and balance difficulties. A recent collaboration between IRP researchers and scientists at the Walter Reed Army Institute of Research has produced important insights into the biological basis of those disabilities, which could eventually lead to better methods of preventing and treating them.

Old Drugs Find New Potential Against Hepatitis C

IRP Research Highlights a Novel Target to Stop Viral Infections

Wednesday, July 28, 2021

drug-screening robot

On July 28, health providers, researchers, patients, advocates, and governments across the globe observe World Hepatitis Day. Like this year’s theme, ‘Hepatitis Can’t Wait,’ IRP researchers are wasting no time utilizing the unique resources at the National Institutes of Health to identify innovative ways to combat the virus.

IRP Distinguished Investigator T. Jake Liang, M.D., for example, has focused his life’s work on understanding how hepatitis viruses infect, replicate, and persist in cells. The viruses he studies, hepatitis B and C, together affect more than 10 percent of the worlds’ population and are the most common causes of chronic liver disease and liver cancer. The two viruses were originally discovered in the 1980s by another IRP scientist, Harvey J. Alter, M.D., who shared the Nobel Prize in Medicine for that work in 2020. Nearly three decades later, Dr. Liang’s lab at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) worked with scientists at the National Center for Advancing Translational Sciences (NCATS) to develop a novel test to screen thousands of molecules using a technology called high-throughput screening, which led to the discovery of several compounds with the potential to block hepatitis C infection.

Experimental Compound Supercharges Cellular Power Plants

Treatment Approach Could Combat Obesity and Its Consequences

Tuesday, July 20, 2021

light bulb

When your phone or laptop is low on power, you simply connect it to a charger and find the nearest electrical outlet, but the process of restoring lagging energy production in our cells is not nearly as simple. However, a new IRP study has identified a promising approach for doing just that, which could lead to new treatments for obesity and related metabolic ailments like heart disease and diabetes.

Dog Genome Yields Clues to Human Cancer

IRP Research Identifies Genetic Risk Factors for Highly Lethal Disease

Tuesday, June 29, 2021

flat-coated retriever

We may share our food and even our beds with them, but despite what many dog lovers might like to believe, our canine companions are not humans who just happen to walk on four legs. One thing we do have in common, though, is the array of genetic diseases that afflict both man and man’s best friend. As a result, scientists can learn a great deal about human illnesses by studying dogs. Using this approach, IRP researchers recently discovered genetic variants that likely play an important role in a rare and poorly understood form of cancer.

Rare Genetic Mutation Links Two Neurological Diseases

Globe-Spanning Collaboration Connected ‘Viking Gene’ to Dementia and ALS

Monday, June 21, 2021

A man with ALS uses a head-mounted laser pointer to communicate with his wife by pointing to letters and words on a communication board

June was an important month in the life of baseball great Lou Gehrig. It was the month he was born and the month he was first picked for the Yankees’ starting lineup. Sadly, it was also the month in 1939 when he was diagnosed with the neurological disease that bears his name — Lou Gehrig’s disease, also known as amyotrophic lateral sclerosis (ALS) — and the month he died of that disease two years later. It is appropriate then that ALS Awareness Day is observed on June 21 as a day of hope for those searching for effective treatments and, ultimately, a cure.

IRP senior investigator Bryan J. Traynor, M.D., Ph.D., a neurologist at the National Institute on Aging (NIA), is one of the people leading that search. Best known for his work unraveling the genetic causes of ALS and frontotemporal dementia (FTD), he led an international consortium of researchers that uncovered a mutation on chromosome 9 that is the most common ‘familial’ cause of both ALS and FTD. In fact, this mutation, which disrupts the function of the C90RF72 gene, is responsible for 40 percent of all familial cases of ALS and FTD in European and North American populations, meaning cases in which a family member also has the disease. The discovery, published in 2011, revolutionized the scientific understanding of neurodegenerative diseases and the relationships between them. It also suggested a potential target for future gene therapies.

  • First page« First
  • Previous page‹ Previous
  • …
  • Page 99
  • Page 1010
  • Page 1111
  • Page 1212
  • Current page13
  • Page 1414
  • Page 1515
  • Page 1616
  • Page 1717
  • …
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search