Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Healing Better, Faster
      • No Tech? No Problem!
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

IRP Discoveries

Three-Armed Antibody Could Offer Defense Against AIDS

Four Questions with Dr. John Mascola

Friday, November 29, 2019

HIV-infected T cell

The disease known as human immunodeficiency virus, or HIV, attacks and destroys cells vital to the immune system. This leaves the millions of people living with HIV less able to fight other infections and can lead to an extremely severe form of immune system deficiency called acquired immunodeficiency syndrome (AIDS), which was responsible for nearly 770,000 deaths in 2018 alone. As of 2019, there are approximately 37.9 million people around the world living with HIV/AIDS.

Although HIV/AIDS has been recognized as a serious public health crisis, finding effective treatments, or a vaccine to prevent infection in the first place, is not a simple task. The HIV virus has many different types and strains — similar to the flu — which makes developing vaccines and treatments extremely challenging, as the virus is constantly changing. At the NIH, there are a number of ongoing collaborative research projects aimed at providing new options for those diagnosed with HIV/AIDS and those at risk for contracting the virus in the future.

A New Understanding of What’s Living on Your Skin

Five Questions with Dr. Heidi Kong and Dr. Julia Segre

Monday, November 25, 2019

microbes within a human body

When people think of skin health, they often think of protecting it from harmful UV rays or finding ways to avoid the fine lines and wrinkles that often come with aging and sun exposure. However, there are many factors and illnesses that impact skin health, including eczema, a chronic condition that affects tens of millions of Americans and causes the skin to become red and so itchy that it can interfere with patients’ sleep.

To combat such conditions, IRP researchers have spent decades investigating what causes them in humans through techniques such as immunology, genetics, molecular biology, and structural biology. In a 2014 study of healthy volunteers, IRP investigators Julia Segre, Ph.D., and Heidi Kong, M.D., M.H.Sc., used the latest genomic techniques to investigate the collection of microorganisms living on healthy human skin, known as the skin microbiome, in an attempt to understand how this collection of bacteria, fungi, and viruses may contribute to skin health. From their interdisciplinary research, the team was able to show that the array of microbes living on human skin is extremely diverse, varying greatly from individual to individual and between different areas of the body. This research opened doors for additional studies exploring how changes in the skin microbiome contribute to both common and rare skin diseases.

Antibiotics Could Assist Liver Cancer Care

Four Questions with Dr. Tim Greten

Tuesday, November 19, 2019

medications

There are over 100 different types of cancer, with liver, breast, and colon cancers among the most common. At the NIH, researchers across the organization have long been committed to furthering cancer research in an effort to increase the number of cancer survivors. They consistently push the boundaries of this field each day in the hopes that their work could lead to better diagnoses, better treatment, and better outcomes for cancer patients.

A 2018 study by IRP senior investigator Tim Greten, M.D., and his IRP colleagues did just that and more. Their research pushed the norms of cancer research by studying how a treatment as simple as antibiotics affects cancerous liver tumors. By utilizing antibiotics to wipe out the collection of microorganisms living in the digestive tracts of mice — known as the gut microbiome — the team identified a link between the gut microbiome and the behavior of the liver’s immune cells, which play a role in defending the organ against cancer. The IRP team ultimately showed that antibiotic treatment reduced the development of liver tumors in these ‘germ-free’ mice, and it also reduced the likelihood that tumors in other areas of the body would metastasize — or spread — to the animals’ livers, a finding that could one day prove beneficial to future cancer patients.

Reining in Runaway Enzyme Halts Neuronal Destruction

Mouse Study Supports Potential Treatment Approach for Numerous Neurological Diseases

Tuesday, November 12, 2019

mouse spinal cord neurons

Winter is fast approaching, bringing with it both picturesque snow flurries and raging blizzards. It's a good reminder that something that is desirable in moderate amounts can be downright dangerous in large quantities, and the systems that keep our cells healthy are no different. IRP researchers recently found a novel way to tamp down a runaway cellular process that can kill neurons, findings that may one day lead to new treatments for several debilitating neurological conditions.

Alcohol Abuse Makes ‘Epigenetic Clock’ Run Faster

Study Finds Heavy Alcohol Use Accelerates Cellular Aging

Tuesday, October 29, 2019

old clock

In an era when 80-year-olds are running marathons while 30-year-olds suffer from obesity-induced heart attacks, inferring the condition of people’s bodies from their birth years is a bit outdated (pun intended). As a result, scientists and clinicians are increasingly examining biological signposts to gauge how well a person’s tissues are functioning. By looking at chemical markers on DNA, IRP researchers recently found that heavy alcohol use accelerates aging at the cellular level.

Cellular Garbage Aids Quest for Alzheimer’s Blood Test

Experimental Approach Predicts Future Alzheimer’s Diagnoses

Tuesday, October 15, 2019

exosomes

If you looked through my garbage, you would probably find a litany of apple cores (my favorite fruit) and a couple fundraising requests from my alma mater. Similarly, scientists can learn a lot about what is going on in cells by examining their trash. IRP researchers recently developed a blood test that may be able to predict Alzheimer’s disease years before the onset of symptoms by examining packages of waste products from neurons.

Genes Contribute to Population-Based Differences in Antidepressant Response

5 Questions with Dr. Francis McMahon

Thursday, October 10, 2019

doctor examining African American patient

Depression is one of the most common mental health conditions in the U.S., affecting nearly seven percent of American adults each year. With the increasing social and economic pressures of the modern world likely contributing to depressive symptoms, it is more important now than ever to study depression and the factors that contribute to recovery.

A number of variables contribute to an individual’s overall mental health and response to treatment, including elements of nature and nurture that have long been studied at the NIH. In a 2013 study, researchers led by IRP senior investigator Francis McMahon, M.D., set out to understand the complex genetic factors that he believed might help explain why antidepressants are less effective for African Americans with depression than for other populations. His research revealed that differences in socioeconomics and health explained most of those differences in antidepressant response, and the remaining differences were explained by differences in genetic ancestry, rather than self-reported race. The discovery that genetics play a role in this health disparity could help close the gap and improve depression treatment for African Americans.

Chemical Tag-Team Shows Promise as Diabetes Treatment

Therapeutic Strategy Enhances Natural Blood Sugar Control

Tuesday, October 1, 2019

home blood sugar testing device

Just like Sonny needed Cher to achieve music super-stardom and Stephen Curry needed Kevin Durant to win back-to-back NBA championships, sometimes a cell or molecule in the human body needs a partner’s assistance to work optimally. IRP researchers recently showed that a synergy between a lab-designed drug and a molecule naturally produced in the body could make for a promising therapy for type 2 diabetes.

Yoga Helps Pain and Brain

Five Questions with Dr. Catherine Bushnell

Monday, September 9, 2019

woman practicing yoga

Yoga is all the rage these days, with millions of people taking part in the practice for relaxation, meditation, and increasing flexibility and muscle strength. However, the benefits of yoga go beyond what most might think. In fact, the mind-body practice of yoga could have a significant impact on the lives of those living with chronic pain, a condition that affects tens of millions of Americans.

In the past, doctors often prescribed opioids to treat chronic pain. However, research has shown that people with chronic pain have anatomical and neurochemical alterations in the brain that make them less responsive to opioids. In addition, both the medical and political systems are currently contending with a public health crisis stemming from the over-use of opioid pain medications. As a result, researchers have been working to identify ways to better manage chronic pain, particularly without the use of medication.

Genome Modifications Affect Protein Variation in Tumors

Examining DNA Methylation Could Facilitate Targeted Cancer Therapy

Tuesday, September 3, 2019

DNA double helices

As an amateur home chef, I know from experience that the ingredients you use can dramatically alter the way a recipe turns out. Leave out oregano and your tomato sauce will be bland; add too much red pepper and your plate of pasta will scorch your tongue.

In this way, it turns out, cooking is a lot like the process by which your genes manufacture the proteins that keep your body running. Just like the same recipe can result in a delicious or disappointing meal depending on how you modify it, a certain gene can produce several varieties of a single protein that behave in different ways. In some cases, these alterations may lead to disease. New IRP research has revealed that a genetic regulatory process called DNA methylation can contribute to cancer by changing which forms of a protein a gene produces.1

  • First page« First
  • Previous page‹ Previous
  • …
  • Page 1515
  • Page 1616
  • Page 1717
  • Page 1818
  • Current page19
  • Page 2020
  • Page 2121
  • Page 2222
  • Page 2323
  • …
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search