Rare Disease Day, celebrated on or near February 29 — the rarest day on the calendar — calls attention to the 300 million people in the world who have some sort of rare disease. For children born with one of those diseases, speedy diagnosis and treatment may be necessary to ward off long-term complications, but that’s much easier said than done. This is especially true for pediatric autoinflammatory diseases, in which the immune system attacks the child’s own body. IRP senior investigator Raphaela T. Goldbach-Mansky, M.D., M.H.S., has made it her mission to discover and define these diseases and the genes that cause them, and then find a way to provide treatment.
IRP Research Hints at Potential of Genomic Technologies to Predict Patient Outcomes
Our genes certainly have a huge influence over our risk for disease, but they don’t operate in a vacuum. Rather, they’re decorated with numerous molecular tags like a bejeweled bracelet, and these ‘epigenetic’ markers affect how genes behave. A recent IRP study revealed differences in certain epigenetic markers that may one day help doctors more effectively treat patients with the autoimmune disease known as lupus.
NIH Researcher Explores Why Some Survive Infection-Induced Organ Damage
“When you have eliminated the impossible, whatever remains, however improbable, must be the truth.” That line from Arthur Conan Doyle’s Sherlock Holmes can be applied to mysteries of all sorts, including the ones scientists toil away in their labs to solve. When it comes to solving the many mysteries of sepsis — a life-threatening immune over-reaction to an uncontrolled infection — the process of elimination is leading us closer to answers, thanks to researchers at the NIH Clinical Center.
Sepsis — also known as septic shock in its most severe form — occurs when the body’s immune system kicks into overdrive to fight a severe infection. Unfortunately, rather than just attacking the harmful invaders, the immune system releases chemicals that, when present in excess, cause intense, tissue-damaging inflammation and impair organ function. In recognition of Sepsis Survivors Week, we spoke with IRP Senior Investigator Charles Natanson, M.D., about two of the great mysteries of sepsis: how does sepsis cause organ failure in the first place, and why do some people survive it while so many others die?
Over the last few decades, advances in cervical cancer screening and prevention have fundamentally changed the approach to dealing with one of the most common forms of cancer in younger women. While doctors have been able to detect cancerous and pre-cancerous cells with a Pap smear since the 1940s, the more recent discovery that the human papillomavirus (HPV) causes more than 90 percent of cervical cancers now affords greater accuracy to regular screening tests. What’s more, IRP researchers truly changed the game by developing a vaccine against HPV, which was approved by the U.S. Food and Drug Administration (FDA) in 2006.
Still, despite these extremely positive developments, much work remains to be done, as cervical cancer continues to kill about 4,000 American women each year. In honor of World Cervical Cancer Awareness Month this January, we spoke with IRP Senior Investigator Nicolas Wentzensen, M.D., Ph.D., about his efforts to bring that number as close to zero as possible.
IRP Research Utilizes National Study’s Data to Explore Under-Examined Phenomenon
From the spicy Bloody Mary and sweet piña colada to salty margaritas and bitter cheap beers, alcoholic drinks span the entire spectrum of tastes. It’s not a far leap, then, to think that the sense of taste can influence alcohol consumption habits, and vice-versa. A recent IRP study dove into this question, ultimately discovering a number of ways that smell and taste perception differ in people with high-risk drinking habits.
Researcher Seeks Risk Factors for Autoimmune Disease
During the winter months, we all rely on our immune systems to keep us from catching a cold or the flu, or help us recover quickly if we do fall ill. However, sometimes the immune system itself is the source of our problems, producing one of dozens of ‘autoimmune’ conditions, some affecting specific organs and others affecting the entire body, with symptoms that range from irritating and uncomfortable to deadly. Even more alarming, while these ailments already affect as many as 50 million Americans, their prevalence is rising for reasons that remain unclear.
Lindsey A. Criswell, M.D., M.P.H., D.Sc., has spent her career investigating this mystery and tracking down the culprits behind autoimmune ailments, likely a complex network of genes and harmful environmental influences. Dr. Criswell, who is Director of NIH’s National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and an adjunct investigator in the National Human Genome Research Institute (NHGRI), was elected to the National Academy of Medicine in 2024 for her accomplishments in this area of research. Her work has identified dozens of genes involved in autoimmune diseases, as well as critical environmental factors that influence their risk and severity.
New IRP Study Supports Non-Invasive Way to Gauge Blood Vessel Health
Nobody likes being jabbed with a needle for blood tests, but for people with sickle cell disease, it’s a necessary and frequent annoyance to make sure their condition is under control. However, blood tests may become less needed in the future for those patients thanks to new IRP research that has identified ways to measure certain health metrics using non-invasive, light-based technologies.
When IRP graduate student Pilar Alvarez Jerez looked at the results of a recent experiment, she noticed that when a particular genetic variant is present in a gene called GBA1, it causes a change in the gene's activity. The GBA1 variant, which is associated with Parkinson’s disease and Lewy body dementia, was discovered last year in people of African ancestry by researchers at NIH’s Center for Alzheimer's and Related Dementias (CARD). It appears to suppress the gene’s ability to make a functional version of an enzyme that helps brain cells recycle their proteins.
“This was an interesting finding, but it still didn’t answer how the variant was functioning to lower enzyme activity,” Pilar says.
Study Shows Promise of New Treatment Approach in 3D Brain ‘Organoid’ Model
Our cells’ survival depends on their ability to take in the nutrients and other substances that they require. Unfortunately, this capacity is a double-edged sword, as cells can bring in both valuable resources and ticking time bombs. However, IRP researchers recently identified an existing drug that may be able to combat Parkinson’s disease by reducing cells’ penchant for snatching up the toxic proteins involved in Parkinson’s disease.
IRP Researchers are Developing Vaccines Targeting the ‘Achilles Heel’ of a Wiley Infectious Threat
In the 40 years since HIV, the virus behind AIDS, was first definitively identified, treatments have changed the disease from a sure death to a long-term chronic illness. Yet, as we passed the 36th annual commemoration of World AIDS Day on December 1, it remains a dangerous health threat. Consequently, many researchers are attempting to develop vaccines to prevent or treat HIV, including IRP senior investigator Barbara K. Felber, Ph.D. Dr. Felber has been pursuing an effective vaccine since the discovery of HIV in the early 1980s using a unique approach that is not only making headway toward that important goal, but also offering insights into other infectious diseases, as well as cancer immunotherapy.
This page was last updated on Friday, January 14, 2022