Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

leukemia

Alternative Therapy Relieves Immunotherapy’s Neurological Consequences

Case Studies Highlight New Way to Treat Common Side Effect

Tuesday, February 13, 2024

child with cancer

New medical treatments nearly always come packaged with new side effects. CAR-T cell therapy, a game-changing ‘immunotherapy’ for cancer, is no exception. However, a set of case studies reported by IRP researchers could help physicians better contend with one of the therapy’s most worrisome complications.

CAR-T cell therapy involves collecting immune cells called T cells from a patient's blood, genetically modifying them to turn them into cancer killers, growing millions of the modified cells in the lab, and then returning the cancer-seeking missiles to the patient’s body. As promising as the approach is for eliminating cancer, the first CAR-T cell therapy was approved by the U.S. Food and Drug Administration (FDA) only a bit more than six years ago, so clinicians are still figuring out the best ways to manage its less desirable effects.

HHS Awards Recognize IRP Cancer Researchers

Long Careers at NIH Yield Groundbreaking Achievements

Wednesday, January 3, 2024

from left to right: Dr. Robert Yarchoan, Dr. Elaine Jaffe, and Dr. Louis Staudt

When you work at the National Institutes of Health, major advances in health and science can seem like a regular occurrence. Yet not all advances are created equal; some change entire paradigms for understanding and treating disease, even disarming a disease’s lethal effects.

This fall, three IRP senior investigators received Departmental Awards from the United States Department of Health and Human Services (HHS) for their exceptional contributions to science: Louis M. Staudt, M.D., Ph.D., Elaine S. Jaffe, M.D., and Robert Yarchoan, M.D. Dr. Staudt received the HHS Secretary’s Award for Distinguished Service for his revolutionary work on the diagnosis and treatment of diffuse large B-cell lymphoma (DLBCL); Dr. Jaffe received the Secretary’s Award for Meritorious Service for her pioneering discoveries about lymphomas and blood cancers; and Dr. Yarchoan received the HHS Career Achievement Award for his role in developing the first effective drugs for AIDS and developing treatments for HIV-associated cancers.

Bringing Out the Big Guns Against Blood Cancer

IRP Research Shows Benefits of More Intensive Treatments for Certain Patients

Wednesday, September 28, 2022

woman receiving chemotherapy treatment

Fate can be cruel, especially when it comes to a rare, highly fatal blood cancer called acute myeloid leukemia (AML). Even when months of intensive chemotherapy appear to cause a complete remission of the disease — meaning doctors cannot detect any remaining cancer cells in a patient’s body — roughly half of those patients see the cancer return within two years, or even as soon as six months. Sadly, most of them don’t survive their second bout with the disease.

As a medical student, IRP senior investigator Christopher Hourigan, M.D., D.Phil., thought this outcome was unfair. More than that, he thought it indicated that the standard ways doctors determined if an AML patient was in remission were inadequate, and that remission might not even be the right goal. That’s why he has focused his career on finding ways to detect, prevent, and treat AML recurrence, known in his field as ‘relapse’.

“I was a scientist before I became a doctor, and it was really eye-opening to me, when I started to practice medicine, how difficult some of the treatment decisions were and how limited the information available was to inform those decisions,” Dr. Hourigan says.

Pain Research Center Accelerates IRP Pain Studies

Dedicated Staff and Cutting-Edge Technology Helps Solve Pain’s Many Mysteries

Thursday, May 5, 2022

collage of researchers working with volunteers

For such a common ailment, pain remains a significant mystery. Part of the challenge of studying it is that it occurs in so many conditions and can vary from a mild ache to life-altering misery. Fortunately for both pain patients and IRP researchers studying pain, the NIH Pain Research Center has the technology and expertise to power new discoveries about pain in its many, complex forms.

On March 31 and April 1, NIH’s National Center for Complementary and Integrative Health (NCCIH) hosted a two-day virtual symposium titled “Tackling Pain at the National Institutes of Health: Updates From the Bench, the Clinic, and the New NIH Pain Research Center,” which featured presentations from a number of IRP scientists exploring important questions related to pain. Read on to learn more about some of the research discussed during that event, including efforts examining pain in patients with rare diseases, early-phase clinical trials of a new pain treatment, and investigations of how psychological factors can affect the way people experience pain.

IRP’s Cynthia Dunbar Elected to National Academy of Medicine

Studies of Blood Stem Cells Stimulate Pioneering Therapeutic Approaches

Wednesday, April 14, 2021

Dr. Cynthia Dunbar

The National Academy of Medicine (NAM), first established in 1970 by the National Academy of Sciences as the Institute of Medicine (IOM), is comprised of more than 2,000 elected members from around the world who provide scientific and policy guidance on important matters relating to human health. Election to the NAM is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have not only made critical scientific discoveries but have also demonstrated a laudable commitment to public service.

IRP Distinguished Investigator Cynthia E. Dunbar, M.D., was elected to the NAM last year for her pioneering research into hematopoietic stem cells, the cells in bone marrow that develop into oxygen-carrying red blood cells, infection-fighting white blood cells, and clot-forming platelets. Her work has led to valuable insights into the production of those blood cells, called hematopoiesis, and its role in human health. Her discoveries have also resulted in new approaches to treat disease by improving stem cell functioning or manipulating stem cells with gene therapy.

Reducing Stress Boosts Efficiency of Bacterial Factories

Unconventional Genetic Strategy Could Enhance Production of Medical Treatments

Tuesday, March 23, 2021

E. coli bacteria

We all have bad days on the job — your colleague keeps bugging you, your boss yelled at you for an innocent mistake, and you skipped lunch because you have 10 different deadlines coming up. Understandably, many people find it much harder to get their work done under such stressful circumstances. Microbes that produce chemicals for medicine and scientific research experience similar struggles, but a recent IRP study has found that short-circuiting their stress response makes them far more efficient at that task.

Innovation Awards Spark New Intramural Collaborations

Program Boosts Initiatives Supporting Researchers Across NIH

Tuesday, September 1, 2020

scientists talking in a lab

From Superbowl-winning football teams to comic book cohorts like The Avengers, combining the efforts of multiple talented individuals is a proven strategy for achieving remarkable results. It may come as no surprise, then, that the NIH’s Intramural Research Program (IRP) strongly encourages collaborations that breach the boundaries of its 24 Institutes and Centers. One example of these efforts is the Director’s Challenge Innovation Awards Program, which since 2009 has funded high-impact scientific projects that bring together researchers from across the IRP.

A Country-Spanning Cancer Collaboration

Scientific Team-Up Identifies Source of Tumor Drug Resistance

Tuesday, December 17, 2019

acute myeloid leukemia cells

It’s an unfortunate reality that nearly everyone knows somebody whose life has been affected by cancer. However, a discovery by two researchers who met by chance years ago might one day help more cancer patients overcome their disease. Two scientific teams led by the IRP’s Craig Thomas, Ph.D., a group leader at the NIH’s National Center for Advancing Translational Sciences (NCATS), and Daniel Starczynowski, Ph.D., of Cincinnati Children’s Hospital Medical Center, recently published a study describing a possible breakthrough in the fight against acute myeloid leukemia (AML), a form of cancer responsible for nearly 11,000 deaths per year in the United States.

Newest Lasker Scholars Ready to Make Their Mark

Exceptional Early-Stage Investigators Push the Boundaries of Translational Research

Thursday, December 5, 2019

the 2019 class of NIH Lasker Scholars

Online and print publications are constantly touting momentous discoveries by superstar scientists like CRISPR-Cas9 co-discover Jennifer Doudna or the IRP’s own Kevin Hall, who changed the way we think about weight loss. It can be easy to forget that today’s biomedical pioneers were once young researchers toiling to establish themselves in the competitive environment of modern science.

Each year, a small, exceptionally promising group of scientific up-and-comers become Lasker Clinical Research Scholars through a highly competitive program jointly funded by the NIH and the Albert and Mary Lasker Foundation. The program presents early-stage physician-scientists with the opportunity to carry out independent clinical research at the NIH for five to ten years. The 2019 class of Lasker Scholars consists of five extremely talented researchers who are now beginning a critical new phase in their careers. Let’s meet them.

Remembrances: James Holland (1925-2018)

Monday, May 21, 2018

Dr. James Holland

James F. Holland, M.D., a renowned cancer expert who was a major figure in the development of cancer chemotherapy, died on March 22, 2018, at the age of 92. Dr. Holland was among the first group of research physicians recruited to the NIH Clinical Center, serving as a senior surgeon at the National Cancer Institute from 1953 to 1954. In that short year at the NIH, he initiated a clinical trial to compare continuous or intermittent treatment with two chemotherapy agents for acute leukemia in children: methotrexate and 6-mercaptopurine. Dr. Holland moved to Roswell Park Memorial Institute in Buffalo before the trial was completed, but he continued to collaborate. His work ultimately turned an incurable illness into one with an 80% survival rate. In 1972, he and his NIH collaborators shared the Albert Lasker Clinical Medical Research Award for "outstanding contribution to the concept and application of combination therapy in the treatment of acute leukemia in children."

  • Current page1
  • Page 22
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search