Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • No Tech? No Problem!
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

IRP Discoveries

Intermittent Fasting Boosts Endurance in Mouse Marathoners

Tuesday, March 13, 2018

runner tying his shoe

Food companies have long marketed carbohydrate-rich drinks and energy bars to athletes with the message that the energy those snacks provide is key to lifting heavier and running farther. A new mouse study by IRP researchers, however, suggests that skipping a meal (or several) might be far more effective for increasing athletic prowess1.

Unlike modern Americans used to three square meals a day, our ancient ancestors couldn’t exactly throw a TV dinner in the microwave whenever they felt a bit peckish. As a result, they probably found themselves hunting wooly mammoths and fending off saber-toothed tigers on an empty stomach.

“From an evolutionary perspective, animals in the wild – particularly predators – need to be able to function at a high level when they’re in a food-deprived state,” says IRP Senior Investigator Mark P. Mattson, Ph.D., the study’s senior author. “Individuals who were able to perform at a high level in a fasted state had a survival advantage.”

HIV Uses Host's Own Immune Molecules for Protection

Tuesday, February 27, 2018

an HIV-infected T cell

In one of Aesop’s classic fables, a clever wolf dons a sheep’s skin in order to move through the herd undetected. As it turns out, IRP researchers have discovered that in people with a specific set of immune system genes, the HIV virus uses a similar approach to hide from the body’s defenses.1

Nearly all cells in our bodies are coated with proteins called human leukocyte antigens (HLAs). These proteins allow the immune system to distinguish between healthy, native cells and those contaminated by unwelcome visitors like viruses or bacteria that must be destroyed. Each of the various HLA proteins is encoded by a different HLA gene and these genes vary considerably between individuals, causing different people to have different variants of each HLA protein.

“There are thousands of different forms of these HLA genes, and that variation allows us, as a species, to deal with virtually all infectious pathogens,” says IRP Senior Investigator Mary N. Carrington, Ph.D., the senior author of the new paper. “We’re really interested in the diversity of that part of the genome, since the risk of essentially every autoimmune disease, many cancers, and probably every infectious disease is associated with this set of genes.”

Gut Bugs May Convert High-Fat Fare into Cancer Risk

Tuesday, February 13, 2018

cartoon image of the gut microbiome showing microbes in the digestive tract

Researchers have a long history of fattening up mice to gain insight into the causes and consequences of weight gain in the human body. In one of the more recent studies of this kind, a team of IRP researchers found that that a high-fat diet consistently altered the collection of microbes residing in mice’s digestive tracts and that this diet-microbe combination might pre-dispose the mice – and, potentially, obese humans – to colon cancer by triggering certain changes in how genes behave.

Ebola Virus: Lessons from a Unique Survivor

Wednesday, May 31, 2017

Reblogged from The NIH Director's Blog.

Ebola virus (green) is shown on cell surface

There are new reports of an outbreak of Ebola virus disease in the Democratic Republic of Congo. This news comes just two years after international control efforts eventually contained an Ebola outbreak in West Africa, though before control was achieved, more than 11,000 people died—the largest known Ebola outbreak in human history. Many questions remain about why some people die from Ebola and others survive. Now, some answers are beginning to emerge thanks to a new detailed analysis of the immune responses of a unique Ebola survivor, a 34-year-old American health-care worker who was critically ill and cared for at the NIH Special Clinical Studies Unit in 2015.

Muscle Enzyme Explains Weight Gain in Middle Age

Tuesday, May 16, 2017

Reblogged from The NIH Director’s Blog.

using a weight scale

The struggle to maintain a healthy weight is a lifelong challenge for many of us. In fact, the average American packs on an extra 30 pounds from early adulthood to age 50. What’s responsible for this tendency toward middle-age spread? For most of us, too many calories and too little exercise definitely play a role. But now comes word that another reason may lie in a strong—and previously unknown—biochemical mechanism related to the normal aging process.

Little Fish in a Big Pond Reveal New Answers to Old Questions

Thursday, April 27, 2017

Reblogged from The NICHD Connection.

Dr. Eric Horstick in the lab

Studying the neural control of behavior is a challenge. Researchers must consider an animal’s environment, past experiences, and motivations. Work in relatively simple organisms, for example the invertebrate C. elegans, has teased apart the neural circuitry of highly stereotyped behaviors, like foraging. But in mammals, very little is known, “and that’s surprising given just how important behaviors like this are,” said Dr. Eric Horstick, who studies the molecular mechanisms underlying animal behavior.

Cool Videos: Looking Inside Living Cells

Monday, February 27, 2017

Reblogged via the NIH Director's Blog.

ASCB Celldance 2016 — “Discovery Inside Living Cells in Multicellular Organisms” Roberto Weigert

Roberto Weigert is a cell biologist who specializes in intravital microscopy (IVM), an extremely high-resolution imaging tool that traces its origins to the 19th century. What’s unique about IVM is its phenomenal resolution can be used in living animals, allowing researchers to watch biological processes unfold in organs under real physiological conditions and in real time.

Find and Replace: DNA Editing Tool Shows Gene Therapy Promise

Thursday, January 26, 2017

Reblogged from the NIH Director’s Blog.

This image represents an infection-fighting cell called a neutrophil. In this artist’s rendering, the DNA of a cell is being “edited” with a pen-like tool to help restore its ability to fight bacterial invaders.

For gene therapy research, the perennial challenge has been devising a reliable way to insert safely a working copy of a gene into relevant cells that can take over for a faulty one. But with the recent discovery of powerful gene editing tools, the landscape of opportunity is starting to change. Instead of threading the needle through the cell membrane with a bulky gene, researchers are starting to design ways to apply these tools in the nucleus—to edit out the disease-causing error in a gene and allow it to work correctly.

NIH researchers identify heritable brain connections linked to ADHD

Tuesday, November 29, 2016

Reblogged from NHGRI News Features.

Illustration of the brain connectome in ADHD

In a new study of families affected by Attention Deficit Hyperactivity Disorder (ADHD), National Institutes of Health (NIH) Intramural researchers have identified different connections in the brain that children may inherit from their parents and are linked to the disorder.

Simplifying HIV Treatment: A Surprising New Lead

Tuesday, November 15, 2016

Reblogged from the NIH Director's Blog.

CD4 cells in colon, SIV

The surprising results of an animal study are raising hopes for a far simpler treatment regimen for people infected with the AIDS-causing human immunodeficiency virus (HIV). Currently, HIV-infected individuals can live a near normal life span if, every day, they take a complex combination of drugs called antiretroviral therapy (ART). The bad news is if they stop ART, the small amounts of HIV that still lurk in their bodies can bounce back and infect key immune cells, called CD4 T cells, resulting in life-threatening suppression of their immune systems.

  • First page« First
  • Previous page‹ Previous
  • …
  • Page 1818
  • Page 1919
  • Page 2020
  • Page 2121
  • Page 2222
  • Page 2323
  • Current page24
  • Page 2525
  • Page 2626
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search