Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram (external link)
  • Twitter (external link)
  • YouTube (external link)
  • LinkedIn (external link)

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

NIH researchers identify heritable brain connections linked to ADHD

By IRP Staff Blogger

Tuesday, November 29, 2016

Reblogged from NHGRI News Features. Originally posted by Jeannine Mjoseth on November 23, 2016. (external link)

Findings set stage for research into the genomics of ADHD

In a new study of families affected by Attention Deficit Hyperactivity Disorder (ADHD) (external link), National Institutes of Health (NIH) researchers have identified different connections in the brain that children may inherit from their parents and are linked to the disorder. One of the most common childhood neuropsychiatric disorders, ADHD is highly heritable—meaning that genes play a role in its development—but little is known about the specific genes involved.

More knowledge about these brain connections can help researchers discover and understand the genes associated with ADHD and, in the long run, lead to improved treatments, according to Philip Shaw, B.M.B.Ch., Ph.D., senior author and an investigator in the Social and Behavioral Research Branch (external link) at the National Human Genome Research Institute, part of NIH.

Here, Dr. Shaw shares insights from the new study that was published November 16 in JAMA Psychiatry (external link).

What is ADHD and how many people are affected by it?

Dr. Shaw: ADHD is a relatively common condition marked by inattention, hyperactivity and impulsive behavior. These symptoms are not trivial and can cause major problems at home, at work and with peers. Around one in 15 children and one in 40 adults are currently diagnosed with ADHD. We approach this common problem by looking at the brain, as we know that ADHD is partly caused by some subtle brain changes that we can safely detect using brain imaging.

What role do genes play in ADHD?

Dr. Shaw: In the simplest terms, certain genes provide the blueprint for building the brain; the brain produces the symptoms of ADHD. We know surprisingly little about the exact genes involved. There does not seem to be a single gene that causes ADHD. Rather, it seems that many genes act together to slightly increase a person's chance of developing ADHD.

What were you trying to do in this study?

Dr. Shaw: Using advanced, safe imaging technologies, we looked at the brains of 350 individuals in families affected by ADHD. We wanted to identify the connections in the brain that are most likely to be helpful in future genomics studies. So, we looked at a vast number of brain connections and ranked them according to which were most likely to be inherited and play a role in ADHD. We're now asking which genes might be linked with these "top" brain connections.

What kind of brain connections did you look at?

Dr. Shaw: We looked at two types of brain connections: Structural connections made up of white matter tracts that join different brain regions, and functional connections, the coordinated patterns of brain activity that "fire" together when we think, see, act or feel. To better understand what we were looking at, picture a telephone wire connecting two [land line] telephones. The telephone wires are like the structural connections within the brain. The functional connections are like the conversation being carried across the telephone wires.

What parts of the brain's structural and functional connections are both heritable and associated with ADHD?

Dr. Shaw: We found that the most heritable structural connections join parts of the brain that are involved in the control of action and attention. This makes a lot of sense when we think about the challenges faced by those with ADHD. Similarly, the most heritable functional connections lay in the brain systems that control attention.

What are the next steps?

Dr. Shaw: We've identified the structural and functional connections in the brain that are highly heritable and associated with ADHD symptoms. We can now ask how genetic variation influences these connections that are so important in the disorder. Eventually, this work might help us identify new targets for treatment. Such novel treatments could help improve the lives of people living with ADHD by reducing or eliminating symptoms.


Category: IRP Discoveries
Tags: ADHD, brain, mental health, connectome, genome, DNA, genes, behavior, psychiatry

Related Blog Posts

  • Studying ADHD from Genes to the Brain Connectome
  • Gender Differences in Emotional Responses May Start in the Womb
  • New Neurons Push Away PTSD
  • Overturning the Orthodoxy About the Brain’s Stress Chemical
  • Wearable Tech Tracks Ebbs and Flows of Bipolar Disorder

This page was last updated on Wednesday, January 31, 2024

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email (email)
  • Print
  • Share Twitter (external link) Facebook (external link) LinkedIn (external link)

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services (external link)
  • National Institutes of Health (external link)
  • USA.gov (external link)

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure (external link)
  • Web Policies & Notices
  • Site Map
  • Search