Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

Cool Videos: Looking Inside Living Cells

By IRP Staff Blogger

Monday, February 27, 2017

Reblogged from the NIH Director's Blog. Originally posted by Dr. Francis Collins on February 9, 2017.

Cell biologists now possess an unprecedented set of laboratory tools to look inside living cells and study their inner workings. Many of these tools have only recently appeared, while others have deeper historical roots. Combining the best of the old with the best of the new, researchers now have the power to explore the biological underpinnings of life in ways never seen before.

That’s the story of this video from the lab of Roberto Weigert, an intramural researcher with NIH’s National Cancer Institute and National Institute of Dental and Craniofacial Research. Weigert is a cell biologist who specializes in intravital microscopy (IVM), an extremely high-resolution imaging tool that traces its origins to the 19th century. What’s unique about IVM is its phenomenal resolution can be used in living animals, allowing researchers to watch biological processes unfold in organs under real physiological conditions and in real time.

However, the challenge has been that IVM is so high resolution that the most seemingly trivial movements, such as the animal’s breathing or even a slight twitch, have a jarring visual effect that’s somewhat like watching a series of major earthquakes. Weigert and his collaborators solved this problem by learning to better stabilize an organ of interest and minimize the motion artifacts. After accomplishing that, his group went on to maximize the optics of IVM, cracking the subcellular barrier about eight years ago to visualize the trafficking of molecules within the cell in nearly real time. He calls this high-resolution IVM approach Intravital SubCellular Microscopy (iSMIC).

That’s where “new” enters the picture. New live cell-imaging probes, such as green fluorescent protein, have allowed Weigert and his colleagues to tag molecules of interest with high specificity and then trace their subcellular movements in a living animal. Or by using gene editing tools, such as CRISPR/Cas9, they can generate animal models with fluorescently tagged proteins even faster to study the effects of genetic alterations, all with tremendous specificity and clarity seen in this video.

The resolution of IVM is also getting even better. Six years ago, Weigert’s cellular movies were shot in two dimensions. Now, all of his movies are shot in 4D (three dimensions over time) using a special image-capture system, called a resonance scanner, that averages 30 frames per second. New resonance scanners have arrived on the IVM market that can go up to 430 frames per second, producing an enormous volume of information about the cell and its inner workings.

So, enjoy this interesting video, one of the winners recently featured in the American Society for Cell Biology’s 2015 Celldance video series. Weigert says he and his team are still getting the hang of filming at a capacity of 430-frames per second. But, when they do, biology students and science enthusiasts alike will be in for some more amazing viewing!

Links:

  • Cellular Imaging (National Institute of General Medical Sciences/NIH)
  • Weigert Lab (National Cancer Institute/NIH)
  • Celldance 2016 (American Society for Cell Biology, Bethesda, MD)

NIH Support: National Cancer Institute; National Institute of Dental and Craniofacial Research


Category: IRP Discoveries
Tags: iSMIC, imaging probes, intravital microscopy, high-resolution imaging, cells, biology, cancer, CRISPR, microscopy, probes, proteins, organs, molecules, green fluorescent protein, subcellular movement, genetics

Related Blog Posts

  • Targeting Tumors in the Brain
  • African Ancestry May Influence Immune Response to Prostate Cancer
  • Dog Genome Yields Clues to Human Cancer
  • How a Marker for Genetic Damage Changed the Study of DNA
  • Gene Editing Reveals Potential Cancer Treatment Target

This page was last updated on Wednesday, January 31, 2024

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search