Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

genes

Postdoc Profile: A Bird’s-Eye View of Retinal Disease

Dr. Noor White Traces Evolution to Identify Genes Critical for Vision

Monday, April 11, 2022

Dr. Noor White

The eye has existed in some form for roughly 600 million years. Its many intricate components and the general ability of organisms to sense light have continued to adapt and evolve over huge spans of time into what we know as vision today. By mapping out the evolution of vision, Noor White, Ph.D., hopes to shed light on the genetic causes of diseases that affect the retina, the part of the eye that turns light into electrical signals the brain can use to build an image of our surroundings.

“If we can take a step back and look at the bigger picture, then we can identify the critical genetic components of vision,” explains Dr. White, who was an IRP postdoctoral fellow for four years before becoming a Staff Scientist in March.

Genetic Sequencing Solves Drug Reaction Mystery

Immune System Genes Linked to Severe Side Effects in Patients with Rare Disease

Tuesday, January 11, 2022

computer monitor showing the results of DNA sequencing

When you run the largest-ever study of a rare childhood disease, you become the go-to person when your peers notice something peculiar in patients with the illness. It was not too surprising, then, when a researcher from Stanford University in Palo Alto, California, asked IRP investigator Michael Ombrello, M.D., to help her team follow a new lead in the mystery of why some patients with a rare inflammatory condition called Still’s disease were coming down with a life-threatening lung ailment. The results of their collaboration could lead to a new precision medicine approach that individualizes therapy for Still’s disease based on patients’ DNA.

Dog Genome Yields Clues to Human Cancer

IRP Research Identifies Genetic Risk Factors for Highly Lethal Disease

Tuesday, June 29, 2021

flat-coated retriever

We may share our food and even our beds with them, but despite what many dog lovers might like to believe, our canine companions are not humans who just happen to walk on four legs. One thing we do have in common, though, is the array of genetic diseases that afflict both man and man’s best friend. As a result, scientists can learn a great deal about human illnesses by studying dogs. Using this approach, IRP researchers recently discovered genetic variants that likely play an important role in a rare and poorly understood form of cancer.

IRP’s Charles Rotimi Elected to American Academy of Arts and Sciences

Pioneering Genetic Epidemiologist Takes a Global Approach to Fighting Health Disparities

Wednesday, June 16, 2021

Dr. Charles Rotimi

IRP distinguished investigator Charles Rotimi, Ph.D., was elected to the American Academy of Arts and Sciences this year in recognition of his pioneering work exploring the health implications of genetic diversity in populations with African ancestry, as well as for globalizing the study of genomics, particularly in African nations. Dr. Rotimi joined NIH in 2008 as the founding director of the Intramural Center for Genomics and Health Disparities in the National Human Genome Research Institute (NHGRI), which was later renamed the Center for Research on Genomics and Global Health, in part to reflect Dr. Rotimi’s globe-spanning research programs.

Postbac Poster Day Showcases Young Scientific Talent

Scientists-in-Training Impress at Virtual Event

Monday, May 10, 2021

Malcolm Udeozor

Despite the challenges of working during a global pandemic, IRP scientists continue to make groundbreaking discoveries and mentor the next generation of researchers. This includes the hundreds of recent college graduates conducting research in NIH labs through the Postbaccalaureate IRTA program. On April 28, 29, and 30, many of these budding scientists presented the fruits of their efforts at this year’s virtual Postbac Poster Day. Read on to learn about a small sampling of the scientific strides NIH’s postbacs are making.

How a Marker for Genetic Damage Changed the Study of DNA

Decades Later, IRP Researcher’s Discovery Is Used in Labs Around the World

Wednesday, April 21, 2021

Dr. William Bonner

National DNA Day, held on April 25, commemorates the completion of the Human Genome Project in 2003 and the day in 1953 when a research team led by Drs. James Watson, Francis Crick, Maurice Wilkins, and Rosalind Franklin published their groundbreaking paper on the structure of DNA in the journal Nature.

The mapping of DNA’s structure opened the door to modern genetics and our current understanding of how DNA affects the health and survival of all living things. Since then, there have been numerous additional major leaps forward in the field of genetics. Among them was the discovery of a universal hallmark of DNA damage by IRP Scientist Emeritus William Bonner, Ph.D., an advance that revolutionized the study of how cells sense and repair genetic defects. Dr. Bonner’s findings paved the way for a deeper understanding of cell biology, as well as clinical advances for treating cancer and for assessing risks from radiation in the environment.

RNA-Targeting Therapeutic Restores Protein Absent in Spinal Muscular Atrophy

New Approach Could Enhance Existing Treatments for Debilitating Genetic Disease

Tuesday, April 6, 2021

complimentary RNA and DNA nucleotides

The prospect of editing our DNA to treat genetic diseases may have captured the imaginations of scientists and the public in recent years, but that doesn’t mean there aren’t other ways of combating these illnesses. Many promising therapies act not on DNA itself but rather on DNA’s often overlooked cousin, RNA. For instance, experiments in cells performed by IRP researchers have shown promising results or a RNA-targeting therapeutic developed to treat the debilitating genetic disease spinal muscular atrophy.

Reducing Stress Boosts Efficiency of Bacterial Factories

Unconventional Genetic Strategy Could Enhance Production of Medical Treatments

Tuesday, March 23, 2021

E. coli bacteria

We all have bad days on the job — your colleague keeps bugging you, your boss yelled at you for an innocent mistake, and you skipped lunch because you have 10 different deadlines coming up. Understandably, many people find it much harder to get their work done under such stressful circumstances. Microbes that produce chemicals for medicine and scientific research experience similar struggles, but a recent IRP study has found that short-circuiting their stress response makes them far more efficient at that task.

Designer Drug Uses Double Whammy to Fight Heart Disease

Custom-Built Molecule May Improve On Its Natural Counterpart

Monday, February 22, 2021

plaque buildup in an artery

Ten years ago, a young woman from Chicago came to the National Institutes of Health with a rare genetic condition. A mutation in her DNA was making her metabolic system malfunction, causing levels of fat molecules called triglycerides in her blood to skyrocket far out of the normal range. This triggered inflammation in her pancreas, a painful and potentially life-threatening condition known as pancreatitis. She couldn’t understand why there wasn’t any kind of treatment to help her.

IRP senior investigator Alan T. Remaley, M.D., Ph.D., took on the challenge with the help of Anna Wolska, Ph.D., a research fellow in his lab. Dr. Remaley leads the Lipoprotein Metabolism Section in the National Heart, Lung, and Blood Institute (NHLBI), where he and Dr. Wolska study lipoproteins, small particles that transport fats such as cholesterol and triglycerides through the bloodstream to be broken down and used by cells for energy. Their efforts to help that young woman ultimately led to the discovery — published last January — of a new strategy for reducing triglycerides in order to treat serious ailments like pancreatitis and heart disease.

Rare Genetic Variants Underlie Susceptibility to Reproductive Disruption

IRP Study Could Help Identify Women at Greater Risk for Fertility Problems

Tuesday, February 2, 2021

pregnancy test

As the calendar page turned from 2020 to 2021, many people adopted major lifestyle changes like healthier eating or significantly increasing their physical activity. While these New Year’s resolutions will likely improve their overall health, they could also wreak havoc on the reproductive cycles of a small set of women. New IRP research sheds light on the genetic factors that make some women susceptible to diet- or exercise-induced disruptions to their reproductive systems.

  • First page« First
  • Previous page‹ Previous
  • Page 11
  • Page 22
  • Current page3
  • Page 44
  • Page 55
  • Page 66
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search