Unconventional Genetic Strategy Could Enhance Production of Medical Treatments
By Brandon Levy
Tuesday, March 23, 2021
We all have bad days on the job — your colleague keeps bugging you, your boss yelled at you for an innocent mistake, and you skipped lunch because you have 10 different deadlines coming up. Understandably, many people find it much harder to get their work done under such stressful circumstances. Microbes that produce chemicals for medicine and scientific research experience similar struggles, but a recent IRP study has found that short-circuiting their stress response makes them far more efficient at that task.
Virtual Symposium Showcases Scientists-in-Training
By Brandon Levy
Monday, March 8, 2021
Even in the midst of a global pandemic, life at NIH goes on. IRP researchers continue to run experiments, publish scientific papers, and train the next generation of scientists, including the many graduate students performing research in IRP labs through the Graduate Partnership Program. On February 17 and 18, more than 100 of these scientists-in-training presented their work virtually at the NIH’s 17th annual Graduate Student Research Symposium. Like last year’s entirely online Postbac Poster Day, the event overcame the constraints of COVID-19 precautions to showcase a broad range of research, including several studies focused on the novel coronavirus.
IRP Research Examines Pandemic From All Angles
By Brandon Levy
Tuesday, July 7, 2020
The sheer number of labs and wide variety of scientific perspectives in the IRP make it particularly well-suited to combating a disease like COVID-19, which is affecting patients’ health and the world around them in a huge number of ways. IRP researchers specializing in psychology, genetics, epidemiology, and many other disciplines are pursuing an array of strategies to learn more about the novel coronavirus.
NIH Researcher Recognized for Investigation into Genomic Stability
By Brandon Levy
Monday, June 29, 2020
The National Academy of Medicine (NAM), first established in 1970 by the National Academy of Sciences as the Institute of Medicine (IOM), is comprised of more than 2,000 elected members from around the world who provide scientific and policy guidance on important matters relating to human health. Election to the NAM is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have not only made critical scientific discoveries but have also demonstrated a laudable commitment to public service.
IRP senior investigator Andre Nussenzweig, Ph.D., was one of four IRP researchers recently elected to the NAM. Dr. Nussenzweig leads the Laboratory of Genome Integrity at the National Cancer Institute (NCI), where he studies how cells repair a form of DNA damage called a double strand break (DSB). This type of insult, which severs both strands of the double-stranded DNA molecule, is one of the most dangerous. If not repaired properly, DSBs can kill cells or cause DNA to rearrange in ways that are associated with cancer. Moreover, while DSBs can be caused by chemotherapy drugs and radiation, they can also happen by random chance during the course of normal cellular processes. Intriguingly, not all parts of the DNA molecule are equally susceptible to this form of damage.
Scientists Parse Wide-Ranging Effects of Endometrial Cancer Mutation
By Brandon Levy
Tuesday, May 12, 2020
The so-called ‘butterfly effect’ supposes that a butterfly flapping its wings in Brazil can cause a tornado in Texas. While the jury is still out on insect-induced natural disasters, it is clear that a single genetic mutation can have wide-ranging and unexpected consequences throughout a cell. By examining the ripple effects caused by changes in a particular gene, IRP researchers have identified a potential treatment target for a particularly deadly variety of cancer.
By Michael Gottesman
Thursday, February 6, 2020
Our friend and former colleague Phil Leder, among the world's most accomplished molecular geneticists, died on Sunday, February 2, at age 85. His work with Marshall Nirenberg — namely, the famed Nirenberg and Leder experiments starting at the NIH in 1964, which definitively elucidated the triplet nature of the genetic code and culminated in its full deciphering — helped set the stage for the revolution in molecular genetic research that Phil himself would continue to lead for the next three decades.
Smoking While Pregnant Affects a Woman’s Genes Differently From Her Baby’s
By Brandon Levy
Tuesday, January 7, 2020
Decades of public health campaigns have made the health consequences of smoking common knowledge. However, for the few women who smoke while pregnant, the habit can affect not only their own bodies but also those of their unborn children. Intriguingly, according to a new study led by IRP researchers, so-called ‘epigenetic’ changes to DNA that can alter the behavior of genes differ significantly in smoking mothers compared to their babies, suggesting that maternal smoking may have unique, long-lasting effects on the way a child’s body functions.
Exceptional Early-Stage Investigators Push the Boundaries of Translational Research
By Brandon Levy
Thursday, December 5, 2019
Online and print publications are constantly touting momentous discoveries by superstar scientists like CRISPR-Cas9 co-discover Jennifer Doudna or the IRP’s own Kevin Hall, who changed the way we think about weight loss. It can be easy to forget that today’s biomedical pioneers were once young researchers toiling to establish themselves in the competitive environment of modern science.
Each year, a small, exceptionally promising group of scientific up-and-comers become Lasker Clinical Research Scholars through a highly competitive program jointly funded by the NIH and the Albert and Mary Lasker Foundation. The program presents early-stage physician-scientists with the opportunity to carry out independent clinical research at the NIH for five to ten years. The 2019 class of Lasker Scholars consists of five extremely talented researchers who are now beginning a critical new phase in their careers. Let’s meet them.
Study Finds Heavy Alcohol Use Accelerates Cellular Aging
By Brandon Levy
Tuesday, October 29, 2019
In an era when 80-year-olds are running marathons while 30-year-olds suffer from obesity-induced heart attacks, inferring the condition of people’s bodies from their birth years is a bit outdated (pun intended). As a result, scientists and clinicians are increasingly examining biological signposts to gauge how well a person’s tissues are functioning. By looking at chemical markers on DNA, IRP researchers recently found that heavy alcohol use accelerates aging at the cellular level.
Annual Event Highlights Contributions of IRP Postdoctoral Fellows
By Brandon Levy
Monday, September 16, 2019
At lunchtime last Wednesday, the NIH Clinical Center’s FAES Terrace echoed with the joyful sounds of scientists nourishing their bodies and their brains. While those stopping by the annual NIH Research Festival poster session could be forgiven for making a beeline straight for the food — including the submissions to this year’s Scientific Directors’ baking competition — once their plates were full, they took advantage of the opportunity to satiate their scientific curiosity as well by checking out the dozens of posters on display.