Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

DNA

Gene Editing Reveals Potential Cancer Treatment Target

Scientists Parse Wide-Ranging Effects of Endometrial Cancer Mutation

Tuesday, May 12, 2020

a piece of DNA being removed from a DNA molecule

The so-called ‘butterfly effect’ supposes that a butterfly flapping its wings in Brazil can cause a tornado in Texas. While the jury is still out on insect-induced natural disasters, it is clear that a single genetic mutation can have wide-ranging and unexpected consequences throughout a cell. By examining the ripple effects caused by changes in a particular gene, IRP researchers have identified a potential treatment target for a particularly deadly variety of cancer.

Remembrances: Phil Leder (1934-2020)

Thursday, February 6, 2020

Phil Leder at a chalkboard

Our friend and former colleague Phil Leder, among the world's most accomplished molecular geneticists, died on Sunday, February 2, at age 85. His work with Marshall Nirenberg — namely, the famed Nirenberg and Leder experiments starting at the NIH in 1964, which definitively elucidated the triplet nature of the genetic code and culminated in its full deciphering — helped set the stage for the revolution in molecular genetic research that Phil himself would continue to lead for the next three decades.

Mothers’ Smoking Leaves Unique Marks on Infants’ DNA

Smoking While Pregnant Affects a Woman’s Genes Differently From Her Baby’s

Tuesday, January 7, 2020

baby holding an adult's finger

Decades of public health campaigns have made the health consequences of smoking common knowledge. However, for the few women who smoke while pregnant, the habit can affect not only their own bodies but also those of their unborn children. Intriguingly, according to a new study led by IRP researchers, so-called ‘epigenetic’ changes to DNA that can alter the behavior of genes differ significantly in smoking mothers compared to their babies, suggesting that maternal smoking may have unique, long-lasting effects on the way a child’s body functions.

Newest Lasker Scholars Ready to Make Their Mark

Exceptional Early-Stage Investigators Push the Boundaries of Translational Research

Thursday, December 5, 2019

the 2019 class of NIH Lasker Scholars

Online and print publications are constantly touting momentous discoveries by superstar scientists like CRISPR-Cas9 co-discover Jennifer Doudna or the IRP’s own Kevin Hall, who changed the way we think about weight loss. It can be easy to forget that today’s biomedical pioneers were once young researchers toiling to establish themselves in the competitive environment of modern science.

Each year, a small, exceptionally promising group of scientific up-and-comers become Lasker Clinical Research Scholars through a highly competitive program jointly funded by the NIH and the Albert and Mary Lasker Foundation. The program presents early-stage physician-scientists with the opportunity to carry out independent clinical research at the NIH for five to ten years. The 2019 class of Lasker Scholars consists of five extremely talented researchers who are now beginning a critical new phase in their careers. Let’s meet them.

Alcohol Abuse Makes ‘Epigenetic Clock’ Run Faster

Study Finds Heavy Alcohol Use Accelerates Cellular Aging

Tuesday, October 29, 2019

old clock

In an era when 80-year-olds are running marathons while 30-year-olds suffer from obesity-induced heart attacks, inferring the condition of people’s bodies from their birth years is a bit outdated (pun intended). As a result, scientists and clinicians are increasingly examining biological signposts to gauge how well a person’s tissues are functioning. By looking at chemical markers on DNA, IRP researchers recently found that heavy alcohol use accelerates aging at the cellular level.

NIH Research Festival Hosts Postdoc Poster-Palooza

Annual Event Highlights Contributions of IRP Postdoctoral Fellows

Monday, September 16, 2019

Dr. Subhash Verma

At lunchtime last Wednesday, the NIH Clinical Center’s FAES Terrace echoed with the joyful sounds of scientists nourishing their bodies and their brains. While those stopping by the annual NIH Research Festival poster session could be forgiven for making a beeline straight for the food — including the submissions to this year’s Scientific Directors’ baking competition — once their plates were full, they took advantage of the opportunity to satiate their scientific curiosity as well by checking out the dozens of posters on display.

Genome Modifications Affect Protein Variation in Tumors

Examining DNA Methylation Could Facilitate Targeted Cancer Therapy

Tuesday, September 3, 2019

DNA double helices

As an amateur home chef, I know from experience that the ingredients you use can dramatically alter the way a recipe turns out. Leave out oregano and your tomato sauce will be bland; add too much red pepper and your plate of pasta will scorch your tongue.

In this way, it turns out, cooking is a lot like the process by which your genes manufacture the proteins that keep your body running. Just like the same recipe can result in a delicious or disappointing meal depending on how you modify it, a certain gene can produce several varieties of a single protein that behave in different ways. In some cases, these alterations may lead to disease. New IRP research has revealed that a genetic regulatory process called DNA methylation can contribute to cancer by changing which forms of a protein a gene produces.1

IRP’s Elaine Ostrander Elected to National Academy of Sciences

Genetic Research in Dogs Sheds Light on Human Disease

Monday, August 26, 2019

Dr. Elaine Ostrander

The National Academy of Sciences, a private society established in 1863, is made up of the United States’ most distinguished scientific scholars, including nearly 500 members who have won Nobel Prizes. Members of the NAS are elected by their peers and charged with the responsibility of providing independent, objective advice on national matters related to science and technology in an effort to further scientific innovation in the U.S.

IRP Senior Investigator Elaine Ostrander, Ph.D., is one of four IRP researchers who were elected to the Academy over the past two years. As head of the Cancer Genetics and Comparative Genomics Branch at the NIH’s National Genome Research Institute (NHGRI), Dr. Ostrander focuses on expanding our understanding of the genetic basis of human disease. However, her team does not just study humans. In fact, Dr. Ostrander works with dog owners, breeders, and veterinarians to study our canine companions and understand which genes control the variations seen across dog breeds. She specifically focuses on genes that control growth and genes associated with cancer susceptibility in an effort to understand why changes in those particular genes can cause illness in humans.

IRP Investigators Answer Burning Genetics Questions

DNA Day Reddit “Ask Me Anything” Prompts Rousing Discussion

Monday, May 6, 2019

Dr. Laura Koehly and Dr. Alexander Katz

Each year on April 25, we celebrate National DNA Day, which commemorates the completion of the Human Genome Project in 2003 and the discovery of DNA's double helix in 1953. On this day students, teachers, and the public learn more about genetics and genomics. In honor of DNA Day this year, on April 24, the NIH IRP partnered with the NIH's National Human Genome Research Institute (NHGRI) to host a Reddit "Ask Me Anything" (AMA) with three experts on the many ways that advances in the genomic sciences are changing our lives.

Plugging the Gaps in the Human Genome

Supercomputing Helps IRP Researchers Complete Our Genetic Blueprints

Monday, April 22, 2019

DNA sequence

While the Human Genome Project accomplished a remarkable feat in sequencing all the genes in the human genome, technological limitations still left significant swaths of our genetic blueprints unexplored. Recent advances in DNA sequencing are starting to fill in those gaps, but these new technologies require new computational tools to make sense of the data they generate. That’s where computer scientists like the IRP’s Adam Phillippy, Ph.D., come in.

  • First page« First
  • Previous page‹ Previous
  • Page 11
  • Page 22
  • Page 33
  • Current page4
  • Page 55
  • Page 66
  • Page 77
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search