Dedicated Staff and Cutting-Edge Technology Helps Solve Pain’s Many Mysteries
For such a common ailment, pain remains a significant mystery. Part of the challenge of studying it is that it occurs in so many conditions and can vary from a mild ache to life-altering misery. Fortunately for both pain patients and IRP researchers studying pain, the NIH Pain Research Center has the technology and expertise to power new discoveries about pain in its many, complex forms.
On March 31 and April 1, NIH’s National Center for Complementary and Integrative Health (NCCIH) hosted a two-day virtual symposium titled “Tackling Pain at the National Institutes of Health: Updates From the Bench, the Clinic, and the New NIH Pain Research Center,” which featured presentations from a number of IRP scientists exploring important questions related to pain. Read on to learn more about some of the research discussed during that event, including efforts examining pain in patients with rare diseases, early-phase clinical trials of a new pain treatment, and investigations of how psychological factors can affect the way people experience pain.
IRP Researchers Discover Unexpected Stress-Blunting Effects of Some Neurons
The past few years have not been easy for anyone. With world events like the COVID-19 pandemic and the war in Ukraine causing everyone to worry, it’s no surprise that during this April’s annual Stress Awareness Month observance, so many people experienced high levels of stress and anxiety. While stress management techniques and talk therapy may help some people, nearly 10 million Americans need prescription anti-anxiety drugs to quell those feelings.
One important target for anti-anxiety medications is norepinephrine, a chemical released by certain neurons in the brain. Norepinephrine — also known as noradrenaline — has traditionally been considered to be a ‘stress chemical’ that triggers anxiety. However, drugs designed to target the neurons that produce it don’t always work as predicted. That’s why IRP senior investigator Patricia Jensen, Ph.D., and her colleagues in the Developmental Neurobiology Group at the National Institute of Environmental Health Sciences (NIEHS) are delving deep into the mouse brain to better understand these neurons and what exactly they do.
NIH Pain Research Center Shines Light on a Common and Complex Ailment
At one time or another, practically everyone has had a headache, stubbed their toe, or scorched their mouth on a hot slice of pizza, making pain one of the few experiences that essentially all people share. Despite its everyday nature, however, pain remains extremely mysterious. Even more enigmatic is chronic pain, which may not even stem from a clearly defined source yet affects more than a fifth of American adults.
Given the near-universality of pain and its huge social and economic burden, it’s no surprise that many researchers at NIH study it. Yet, prior to 2019, there was no central, shared entity in the NIH’s Intramural Research Program that united the many scientists performing this important work. That was the year NIH’s Pain Research Center was established, with the help of funding from the NIH Director’s Challenge Innovation Awards.
Prediction Method Could Help Prevent Age-Related Physical Decline
Throughout human history, people have sought insight into their fates from self-proclaimed psychics and other dubious fortune tellers. Fortunately, scientists are increasingly developing more reliable, data-driven ways to predict the future. For instance, IRP researchers recently showed that an assessment of the cellular batteries that power our muscles can predict the deterioration of physical abilities in older adults.
Dr. Noor White Traces Evolution to Identify Genes Critical for Vision
The eye has existed in some form for roughly 600 million years. Its many intricate components and the general ability of organisms to sense light have continued to adapt and evolve over huge spans of time into what we know as vision today. By mapping out the evolution of vision, Noor White, Ph.D., hopes to shed light on the genetic causes of diseases that affect the retina, the part of the eye that turns light into electrical signals the brain can use to build an image of our surroundings.
“If we can take a step back and look at the bigger picture, then we can identify the critical genetic components of vision,” explains Dr. White, who was an IRP postdoctoral fellow for four years before becoming a Staff Scientist in March.
Nursing Research Leader Sheds Light on How Neighborhoods Influence Health
When you think about public health, city planning might not be the first thing that comes to mind. Yet where we live — the quality of the buildings, the availability of places to walk and play safely, and the types of schools and stores in the neighborhood — can profoundly affect our health. This relationship has been emphasized by the COVID-19 pandemic, as close, stuffy living conditions, the need to take public transportation to essential jobs, and inequities in access to testing and vaccination sites all contributed to the larger reduction in life expectancy for Black and Latino Americans compared to Caucasians over the last two years.
Shannon N. Zenk, Ph.D., M.P.H., R.N., F.A.A.N., Director of the National Institute of Nursing Research (NINR), was elected to the National Academy of Medicine in 2021 for her research into how neighborhood characteristics affect the health of residents and contribute to the health disparities seen between communities with different racial and ethnic makeups and different levels of income.
Pushing Cells to Their Limits Could Enable Earlier Diagnosis and Treatment
If the many stories of mothers lifting cars to save their trapped children prove anything, it’s that we cannot know the true capabilities of our bodies until they are put to the test. This concept, it turns out, could be the key to much earlier diagnosis for Parkinson’s disease. By stimulating specific neurons to push them to their limits, IRP researchers were able to detect Parkinson’s in mice in its very early stages, opening up the possibility that a similar test could one day allow human patients to begin treatment before the disease has caused too much damage.
IRP Researchers Aim to Regenerate Damaged Salivary Glands
It’s easy to take our saliva for granted. Most people have so much of it that they think nothing of spitting it out into a trash can when they finish chewing a stick of gum. Perhaps only people who have lived without it truly understand the great gift that is a perpetually moist mouth.
“Persistent dry mouth causes lots of problems with quality of life, and people forget how important saliva is until they lose it,” says IRP senior investigator Matthew Hoffman, B.D.S., Ph.D.
In honor of World Oral Health Day on March 20, a celebration of scientific efforts to reduce the burden of oral disease, I talked with Dr. Hoffman about his lab’s efforts to understand the biology of salivary gland dysfunction and translate that knowledge into treatments that bring relief to the many people suffering from it.
IRP Researchers Find Link Between Dementia and Byproducts of Cholesterol Breakdown
When most people think about Alzheimer’s disease, the liver is probably the organ least likely to come to mind. Yet recent IRP research suggests that molecules called bile acids, which are synthesized in the liver, may influence the development of Alzheimer’s disease. In honor of Brain Awareness Week this week, we’re diving into that work to learn how such an unlikely target could help lead to new treatments for Alzheimer’s and other forms of dementia.
To date, efforts to develop therapies for Alzheimer’s disease, which affects more than 6 million Americans over the age of 65, have achieved little success. Many scientists are focused on proteins in the brain as potential treatment targets, including the ‘amyloid-beta’ protein now infamous amongst Alzheimer’s researchers. In contrast, IRP senior investigator Madhav Thambisetty, M.D., Ph.D., has been exploring the role that cholesterol might play in the development of Alzheimer’s and vascular dementia, which is marked by microscopic bleeding and blood vessel blockage and is the second most common form of dementia.
IRP’s Ph.D. and Medical Students Present Research at Virtual Event
The IRP isn’t concerned only with discovering the secrets of how our bodies work and developing new therapies to treat disease. Senior scientists and many other employees at NIH also are actively involved in training the next generation of researchers. One place where the benefits of those efforts is strikingly clear is at NIH’s annual Graduate Student Research Symposium, where graduate students performing research in NIH labs show of the fruits of their partnerships with IRP researchers.
On February 16 and 17, more than 100 of the IRP’s graduate students presented their work virtually at the 18th edition of the event. These young scientists discussed the results of studies on a huge range of topics, from how hunger changes during pregnancy to how viruses cause cancer. Read on to learn about a small sampling of the projects they’ve been hard at work on.
This page was last updated on Friday, January 14, 2022