Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

bacteria

Preventing Cellular Rust Hinders Tuberculosis

Study Suggests New Treatment Approach for Deadly Lung Infection

Tuesday, March 21, 2023

tuberculosis bacteria

Oxygen is, quite literally, the air we breathe (or, more accurately, 21 percent of it). However, just as oxygen in the air can turn a handy garden tool into a useless hunk of rust, certain unstable, oxygen-containing molecules in our bodies can wreak havoc on our cells. According to new IRP research, revving up cellular systems that prevent this kind of damage could significantly improve outcomes for people with tuberculosis.

A Year of Honors for IRP Cancer Researchers

Four NIH Scientists Received Prestigious Recognition in 2022

Wednesday, October 19, 2022

clockwise from top-left: Dr. Michael Lichten, Dr. Susan Lea, Dr. Kandice Tanner, and Dr. Deborah Morrison

The complexities of cancer, which is actually a collection of many diseases, has made conquering it an enormous challenge. Fortunately, researchers in the NIH Intramural Research Program are up to the task. This year, four IRP investigators in NIH’s National Cancer Institute (NCI) have been recognized for their groundbreaking contributions to answering fundamental questions about the disease and the immune system’s response to similar threats.

Postdoc Profile: Eavesdropping On Bacterial Banter

Dr. Tiffany Zarrella Examines Communication Between Bacteria to Combat Persistent Infections

Wednesday, October 12, 2022

Dr. Tiffany Zarella

Facebook’s nearly 3 billion users may seem like a huge social network, but it pales in comparison to the conversations among the trillions of microbes that live inside a single human body. Few people know this better than IRP postdoctoral fellow Tiffany Zarrella, Ph.D., who spends her days eavesdropping on the messages bacteria send to one another to improve treatment for stubborn infections.

Dr. Zarrella was drawn to the bacterial world in microbiology lab courses while earning a biochemistry degree at Syracuse University in New York. After graduation, she obtained a research technician position at Albany Medical College, where she worked on projects centered around infectious bacteria and how they respond to their environments. She continued this thread of research in graduate school, moving on to a new study to discover how Streptococcus pneumoniae bacteria, which often cause ear infections and pneumonia, use a particular signaling molecule to resist antibiotic treatments and evade vaccines.

Teaming Up to Tackle Engineering Challenges

Innovation Awards Accelerate Development of New Research Techniques

Monday, September 19, 2022

scientist working with a robotic arm

Scientists spend years, even decades, intensely studying a specific disease or biological system, an approach that yields unrivaled knowledge. However, many important scientific questions require a deep understanding of several subjects. As a result, the IRP has numerous programs dedicated to encouraging scientists with different areas of expertise to work together.

One such program is the NIH Director’s Challenge Innovation Awards, which funds innovative, high-impact projects that require the cooperation of researchers in more than one of NIH’s Institutes and Centers. This year, the program selected six promising proposals with one foot in the disciplines of biology and medicine and another in engineering or the physical sciences.

Beat the Heat With Some NIH History

Measuring and Manipulating Temperature Is Key to IRP Research

Wednesday, August 31, 2022

Many parts of the country were hit by record-breaking heat this summer. Controlling temperature is not only important for staying healthy, but it's also crucial for many types of research. Grab your water bottle and sit down in a shady spot to take a look at some photos from the Office of NIH History & Stetten Museum on the theme of hot and cold.

nurse holding thermometer

Poster Sessions Celebrate Summer Science

Annual Event Brandishes the Next Generation of Clinicians and Scientists

Wednesday, August 24, 2022

 Andrés Gorbea, Sarah Bengtson, Lietsel Jones, Michaella Bono, and Joseph Grech

A year after hundreds of high school, undergraduate, and graduate students were only able to participate from afar in NIH’s 2021 Summer Internship Program, IRP researchers were excited to welcome some of the program’s 2022 participants to campus. Regardless of whether they were working in the lab or remotely, these budding scientists received a full-time immersion into the world of IRP science and, surely, learned a great deal from the mentorship of NIH’s many world-renowned researchers.

To celebrate the interns’ hard work, NIH’s Summer Poster Days on August 3 and 4 gave more than 600 of them the opportunity to virtually present posters explaining their projects. With so many bright young men and women displaying the fruits of their scientific labors, it was difficult to select just a handful to highlight in this blog. Read on to learn about how five of NIH’s 2022 summer interns shed light on topics from the microbes living on our skin to the blood-clotting platelets that flow through our veins.

A Computational Approach to Curbing Chemotherapy’s Side Effects

Study Identifies Compounds That Could Aid Body’s Removal of Toxic Cancer Drugs

Tuesday, May 17, 2022

computer binary code

When it comes to cancer, the treatment can sometimes feel worse than the disease. Not only do chemotherapy drugs cause grueling side effects, but certain products made by otherwise benign bacteria living in our digestive system can interfere with the body’s ability to get rid of those toxic chemicals. A new IRP study used a cutting-edge computational approach to help identify compounds that inhibit one of those meddling bacterial molecules, which could eventually lead to the creation of medications that reduce some of chemotherapy’s side effects.

Reducing Stress Boosts Efficiency of Bacterial Factories

Unconventional Genetic Strategy Could Enhance Production of Medical Treatments

Tuesday, March 23, 2021

E. coli bacteria

We all have bad days on the job — your colleague keeps bugging you, your boss yelled at you for an innocent mistake, and you skipped lunch because you have 10 different deadlines coming up. Understandably, many people find it much harder to get their work done under such stressful circumstances. Microbes that produce chemicals for medicine and scientific research experience similar struggles, but a recent IRP study has found that short-circuiting their stress response makes them far more efficient at that task.

IRP Grad Students Present a Scientific Smorgasbord

Virtual Symposium Showcases Scientists-in-Training

Monday, March 8, 2021

IRP graduate students Khalin Nisbett, Julia Gross, Luis Rivera García, and Temesgen Andargie

Even in the midst of a global pandemic, life at NIH goes on. IRP researchers continue to run experiments, publish scientific papers, and train the next generation of scientists, including the many graduate students performing research in IRP labs through the Graduate Partnership Program. On February 17 and 18, more than 100 of these scientists-in-training presented their work virtually at the NIH’s 17th annual Graduate Student Research Symposium. Like last year’s entirely online Postbac Poster Day, the event overcame the constraints of COVID-19 precautions to showcase a broad range of research, including several studies focused on the novel coronavirus.

Teaching an Old Vaccine New Tricks to Thwart Tuberculosis

The IRP’s Mario Roederer and Robert Seder Discuss the Science Behind the Headlines

Monday, March 23, 2020

Mycobacterium tuberculosis bacteria, the cause of tuberculosis

Some say that if something’s not broken, then don’t fix it, but that doesn’t mean there’s no room for improvement. At least, those were the thoughts of IRP senior investigators Mario Roederer, Ph.D., and Robert Alan Seder, M.D., who recently found that the century-old tuberculosis (TB) vaccine is far more effective when administered via injection into a vein (IV) rather than into the skin, which has long been the standard way it is given. This major breakthrough received extensive media coverage, including a story in the New York Times. We went Behind the Headlines to get the inside scoop on this potentially life-saving discovery.

  • First page« First
  • Previous page‹ Previous
  • Page 11
  • Current page2
  • Page 33
  • Page 44
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search