Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Turning Face Perception on Its Head
      • Safeguarding a Second Chance at Life
      • A Biological Betrayal
      • How to Feast for Your Eyes
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
        • Earl Stadtman Investigator Frequently Asked Questions
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

stem cells

Taming Unruly Stem Cells to Enhance Eye Research

Widely Available Molecule Could Aid Development of Therapies for Blinding Diseases

Tuesday, October 4, 2022

eye

As scientists inch closer to growing fully functioning organs outside the body, it’s easy to forget that it’s already possible to grow miniature, simplified versions of some organs in the lab. These ‘organoids’ are an extremely useful research tool, but producing them can be tricky. New IRP research could make it much easier to grow organoids that mimic the eye’s retina, thereby accelerating discoveries about a variety of vision-impairing diseases.

Pain Research Center Accelerates IRP Pain Studies

Dedicated Staff and Cutting-Edge Technology Helps Solve Pain’s Many Mysteries

Thursday, May 5, 2022

collage of researchers working with volunteers

For such a common ailment, pain remains a significant mystery. Part of the challenge of studying it is that it occurs in so many conditions and can vary from a mild ache to life-altering misery. Fortunately for both pain patients and IRP researchers studying pain, the NIH Pain Research Center has the technology and expertise to power new discoveries about pain in its many, complex forms.

On March 31 and April 1, NIH’s National Center for Complementary and Integrative Health (NCCIH) hosted a two-day virtual symposium titled “Tackling Pain at the National Institutes of Health: Updates From the Bench, the Clinic, and the New NIH Pain Research Center,” which featured presentations from a number of IRP scientists exploring important questions related to pain. Read on to learn more about some of the research discussed during that event, including efforts examining pain in patients with rare diseases, early-phase clinical trials of a new pain treatment, and investigations of how psychological factors can affect the way people experience pain.

Older Cells Make for Riskier Transplants

Examining Molecular Markers of Aging Could Improve Patient Outcomes

Tuesday, September 14, 2021

old clock

In 2003, 92-year-old Fauja Singh ran the Toronto Waterfront Marathon in slightly under six hours, a feat that many people decades younger could not accomplish. Such examples reveal the problems with making assumptions about a person’s health based solely on age. Similarly, new IRP research suggests that assessing cellular characteristics associated with aging, rather than a person’s chronologic age in years, could improve outcomes for the more than 20,000 patients who receive bone marrow or blood stem cell transplants each year.

IRP’s Cynthia Dunbar Elected to National Academy of Medicine

Studies of Blood Stem Cells Stimulate Pioneering Therapeutic Approaches

Wednesday, April 14, 2021

Dr. Cynthia Dunbar

The National Academy of Medicine (NAM), first established in 1970 by the National Academy of Sciences as the Institute of Medicine (IOM), is comprised of more than 2,000 elected members from around the world who provide scientific and policy guidance on important matters relating to human health. Election to the NAM is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have not only made critical scientific discoveries but have also demonstrated a laudable commitment to public service.

IRP Distinguished Investigator Cynthia E. Dunbar, M.D., was elected to the NAM last year for her pioneering research into hematopoietic stem cells, the cells in bone marrow that develop into oxygen-carrying red blood cells, infection-fighting white blood cells, and clot-forming platelets. Her work has led to valuable insights into the production of those blood cells, called hematopoiesis, and its role in human health. Her discoveries have also resulted in new approaches to treat disease by improving stem cell functioning or manipulating stem cells with gene therapy.

Introducing NIH’s Newest Lasker Scholars

Program Gives Boost to Early Stage Investigators

Monday, December 14, 2020

Alison Boyce, Ian Myles, Jacqueline Mays, Yogen Kanthi, and Stephanie Chung

If TV shows like The Voice and America’s Got Talent are any indication, there are many extremely talented people out there who could become huge successes if presented with the right opportunity. This is no less the case in science, with thousands of extremely bright individuals quietly toiling away in their mentors’ labs as they await the chance to establish research programs of their own.

Fortunately, initiatives like the NIH’s Lasker Clinical Research Scholars Program exist to boost promising young researchers on to the next stage of their careers. Every year, the Lasker program allows a small group of early stage physician-scientists to establish their own labs at the NIH and carry out independent clinical research there for at least five years.

The five talented investigators selected as 2020 Lasker Scholars are pursuing a wide range of research questions, from how the immune system influences blood clotting to the mechanisms driving a rare and devastating skeletal disorder. Read on to learn more about the latest crop of researchers ramping up IRP labs of their very own.

Cellular Therapy Could Soothe Sarcoidosis

Cells From Bone Marrow Calm Damaging Immune Response

Tuesday, April 28, 2020

cells

In patients with the inflammatory disease sarcoidosis, the body’s own immune cells rampage around the body like The Incredible Hulk set loose in a city, attacking both harmful pathogens and our own tissues. However, just like the Black Widow can calm The Hulk down and return him to human form in the Avengers films, cells isolated from our bone marrow may be able to change certain immune cells from a damaging state to a benign one, according to new IRP research.

Non-Toxic Drug Could Increase Availability of Organ Transplants

Treatment Regimen Allows Genetically Mismatched Skin Grafts in Mice

Tuesday, June 25, 2019

surgeons performing an organ transplant

Thousands of patients who need an organ transplant die each year before a donor can be found. A new IRP study has identified a safer way to prevent a transplant recipient’s body from attacking a genetically dissimilar donor organ, which could dramatically expand the pool of potential organ donors.

Modified Stem Cells Boost Regeneration After Stroke

New Technique Overcomes Major Obstacle to Stem-Cell-Based Treatments

Tuesday, May 14, 2019

neurons (white) grown from neural stem cells

Your brain cells need plenty of oxygen and nutrients to survive — that is, unless you’re a hibernating ground squirrel. By tapping into the cellular process that keeps these animals’ brains healthy during the long winter months, IRP scientists have discovered a way to increase the survival of neuron-producing stem cells implanted into the brain after a stroke, a development that could one day dramatically improve stroke treatment.

Inflammation Cuts Lifeline for Blood-Producing Stem Cells

Discovery Could Lead to New Approaches for Boosting Blood Cell Counts

Tuesday, March 19, 2019

red blood cell (left), platelet (middle), and white blood cell (right)

Much of human biology is a black box — scientists know the key players and the end results, but not how those outcomes come about. Consequently, it remains a mystery why some medications help patients. A new IRP study has cracked open the black box to reveal how high levels of an inflammatory molecule inhibit blood cell production in some individuals and why a particular medicine helps reverse this life-threatening condition.

Ultrasound-Based Technique Produces Fertile Ground for Therapeutic Stem Cells

Tuesday, October 30, 2018

Mesencyhmal stromal cells (MSCs) releasing a therapeutic molecule called interleukin-10 (green) in a section of kidney tissue

Every good gardener knows the importance of fertilizing the soil before planting seeds, and evidence is accumulating that a similar concept applies to the human body when it comes to experimental stem cell therapies. A new IRP study has uncovered how a medical technology called pulsed-focused ultrasound boosts the healing potency of a particular stem cell treatment.

  • Current page1
  • Page 22
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Michael Gottesman
    • Alex Szatmary
    • Alison Jane Martingano
    • Andy Baxevanis
    • Angie Abraham
    • Ashleigh LoVette
    • Ben Chambers
    • Brandon Levy
    • Brooke Worthing
    • Bruce Tromberg
    • Christophe Marchand
    • Christopher Marcum
    • Craig Myrum
    • Devon Valera
    • Dianne Lee
    • Elizabeth Burke
    • Francis Collins
    • Gabrielle Barr
    • Hoo-Chang Shin
    • Howard Young
    • James Gulley
    • Jeanelle Spencer
    • Jennifer Patterson-West
    • Jessica Pierce
    • Johnetta Saygbe
    • Karen Usdin
    • Kiara Palmer
    • L. Michelle Bennett
    • Lindsey Jay
    • Lucy Bauer
    • Lucy Kotlyanskaya
    • Melissa Glim
    • Michele Lyons
    • Mohor Sengupta
    • Noah Victoria
    • Richard Leapman
    • Robin Arnette
    • Robin Stanley
    • Sara Lioi
    • Simona Patange
    • Swagata Basu
    • Tom Misteli
    • Valerie Bonham
    • Victoria Chiou
    • Yannis Grammatikakis
    • IRP Staff Blogger
  • Categories
    • Collaboration
    • Science
    • Resources
    • Making a Difference
    • Careers

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search