Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

immune system

IRP’s Michael Lenardo Elected to National Academy of Sciences

NIH Researcher Recognized for Enhancing the Molecular Understanding of Immune Responses

Tuesday, March 3, 2020

Dr. Michael Lenardo

The National Academy of Sciences (NAS), established in 1863, is comprised of the United States’ most distinguished scientific scholars, including nearly 500 Nobel Prize winners. Members of the NAS are elected by their peers and entrusted with the responsibility of providing independent, objective advice on national matters related to science and technology in an effort to advance innovations in the United States.

IRP senior investigator Michael Lenardo, M.D., is one of four IRP researchers elected to the NAS over the past two years. At the NIH, Dr. Lenardo serves as Chief of the Molecular Development of the Immune System Section at the NIH’s National Institute of Allergy and Infectious Diseases (NIAID), where he studies how the cells in the immune system mount protective responses to various pathogens, including viruses and bacteria. A major focus of Dr. Lenardo’s work is the investigation of genetic abnormalities in the immune system, which have the potential to cause life-threatening diseases.

Three-Armed Antibody Could Offer Defense Against AIDS

Four Questions with Dr. John Mascola

Friday, November 29, 2019

HIV-infected T cell

The disease known as human immunodeficiency virus, or HIV, attacks and destroys cells vital to the immune system. This leaves the millions of people living with HIV less able to fight other infections and can lead to an extremely severe form of immune system deficiency called acquired immunodeficiency syndrome (AIDS), which was responsible for nearly 770,000 deaths in 2018 alone. As of 2019, there are approximately 37.9 million people around the world living with HIV/AIDS.

Although HIV/AIDS has been recognized as a serious public health crisis, finding effective treatments, or a vaccine to prevent infection in the first place, is not a simple task. The HIV virus has many different types and strains — similar to the flu — which makes developing vaccines and treatments extremely challenging, as the virus is constantly changing. At the NIH, there are a number of ongoing collaborative research projects aimed at providing new options for those diagnosed with HIV/AIDS and those at risk for contracting the virus in the future.

Antibiotics Could Assist Liver Cancer Care

Four Questions with Dr. Tim Greten

Tuesday, November 19, 2019

medications

There are over 100 different types of cancer, with liver, breast, and colon cancers among the most common. At the NIH, researchers across the organization have long been committed to furthering cancer research in an effort to increase the number of cancer survivors. They consistently push the boundaries of this field each day in the hopes that their work could lead to better diagnoses, better treatment, and better outcomes for cancer patients.

A 2018 study by IRP senior investigator Tim Greten, M.D., and his IRP colleagues did just that and more. Their research pushed the norms of cancer research by studying how a treatment as simple as antibiotics affects cancerous liver tumors. By utilizing antibiotics to wipe out the collection of microorganisms living in the digestive tracts of mice — known as the gut microbiome — the team identified a link between the gut microbiome and the behavior of the liver’s immune cells, which play a role in defending the organ against cancer. The IRP team ultimately showed that antibiotic treatment reduced the development of liver tumors in these ‘germ-free’ mice, and it also reduced the likelihood that tumors in other areas of the body would metastasize — or spread — to the animals’ livers, a finding that could one day prove beneficial to future cancer patients.

NIH Research Festival Hosts Postdoc Poster-Palooza

Annual Event Highlights Contributions of IRP Postdoctoral Fellows

Monday, September 16, 2019

Dr. Subhash Verma

At lunchtime last Wednesday, the NIH Clinical Center’s FAES Terrace echoed with the joyful sounds of scientists nourishing their bodies and their brains. While those stopping by the annual NIH Research Festival poster session could be forgiven for making a beeline straight for the food — including the submissions to this year’s Scientific Directors’ baking competition — once their plates were full, they took advantage of the opportunity to satiate their scientific curiosity as well by checking out the dozens of posters on display.

Rare Disease Research Reveals Why Immune Cells Go Wild

Discovery Could Improve Therapy for Multiple Autoimmune Diseases

Tuesday, August 20, 2019

neutrophil extracellular traps (NETs)

Hiding among YouTube’s vast collection of cooking demos and funny cat videos are clips of patients and their advocates designed to raise awareness of specific diseases. It was just such a video that led IRP Senior Investigator Peter Grayson, M.D., M.Sc., to begin studying an extremely rare illness called deficiency of adenosine deaminase 2, or DADA2 for short. The recently published findings of that research could help improve treatment not just for patients with DADA2 but also many more individuals with similar ailments.

Poster Day Showcases Summer Student Science

Annual Event Shares Research by IRP’s Summer Interns

Tuesday, August 13, 2019

IRP summer intern Enat Ayele

NIH’s Natcher Conference Center was packed once again last Thursday for the annual Summer Poster Day. This year, more than 1,200 college and high school students spent their summer performing research in an IRP lab through the NIH’s Summer Internship Program. 

I navigated through the more than 900 posters presented this year to get a taste of the impressive work done by these young men and women in less than three months. If they can make these kinds of discoveries in just one summer, imagine what they might one day accomplish as full-time scientists and clinicians!

HIV Research Yields an Unexpected Discovery

A Conversation with Dr. Paolo Lusso

Thursday, June 27, 2019

Dr. Paolo Lusso

First discovered in 1981, human immunodeficiency virus, or HIV, caused one of the most deadly and persistent epidemics in history. HIV destroys CD4+ T cells, a type of white blood cell essential for fighting infection. In doing so, HIV destroys the body’s ability to fight off disease, which often leads to life-threatening consequences. 

Today, medications have allowed people living with HIV to lead healthier lives. However, HIV still remains a major public health concern and continues to be studied by researchers within the IRP and beyond.

IRP research has produced findings essential to the development of current HIV treatments and tools for diagnosis. However, there is still a lot left to learn. One recent IRP contribution to HIV research was a 2017 study led by IRP senior investigator Paolo Lusso, M.D., Ph.D., which suggests that treatments targeting a protein called integrin α4β7 could potentially become an addition to current treatment options for those with HIV, or provide new measures to prevent infection.

Non-Toxic Drug Could Increase Availability of Organ Transplants

Treatment Regimen Allows Genetically Mismatched Skin Grafts in Mice

Tuesday, June 25, 2019

surgeons performing an organ transplant

Thousands of patients who need an organ transplant die each year before a donor can be found. A new IRP study has identified a safer way to prevent a transplant recipient’s body from attacking a genetically dissimilar donor organ, which could dramatically expand the pool of potential organ donors.

Tracing the Pathway From Skin Irritation to Itching

Disrupting Itch-Related Process Could Relieve Relentless Itching

Tuesday, June 11, 2019

person scratching their skin

For most people, the arrival of spring time means more time spent outdoors — and greater exposure to nuisances like biting insects and poison ivy that make us itch. New IRP research has revealed a detailed picture of how a particular type of cell causes itching, findings that may ultimately help researchers develop treatments for disorders that cause severe and long-lasting itch.

Overlooked Immune Cells Trigger Preterm Labor

New Insights Could Help Reduce Premature Births

Tuesday, May 28, 2019

mother and newborn baby

Any baby born less than 37 weeks after conception is considered premature, but not all premature births have the same root cause. In a new study, IRP researchers have detailed how a particular component of the immune system can trigger premature labor, which could help doctors prevent more preterm births.

  • First page« First
  • Previous page‹ Previous
  • …
  • Page 22
  • Page 33
  • Page 44
  • Page 55
  • Page 66
  • Page 77
  • Current page8
  • Page 99
  • Page 1010
  • Next pageNext ›
  • Last pageLast »

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search