Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

I am Intramural Blog

Postbac Life: Wading Into Drug Discovery Research

Thursday, January 24, 2019

“That machine? You’re gonna have to get up close and personal with it,” Josh, my fellow postbac, told me. I looked at this small metal contraption and nodded, trying to appear as if I understood, while thinking: he just means that people spend so much time sectioning organs on the microtome that it’s like spending an extended amount of time with a loved one, right?

Fast forward a few days, and I find myself breathing warm, moist air onto a paraffin-embedded mouse lung to soften the wax, just before I slice four-micrometer sections of mouse lung tissue that will later be stained and examined under a microscope. “He wasn’t kidding,” I muttered.

Cutting Calories Combats Aging Arteries

Tuesday, January 22, 2019

red blood cells traveling through a blood vessel

While many people think staving off aging means drinking seaweed smoothies and swallowing fish oil supplements, the key to extending life increasingly appears to be not putting things in our mouths. In yet another example of the anti-aging powers of eating less — what scientists call caloric restriction — IRP researchers have identified the specific aging-induced cellular and molecular changes in arteries that are curbed by substantially reducing calorie intake.

Experimental Therapy Reverses Neurological Effects of Malaria

Tuesday, January 8, 2019

MRI brain scans of mice with (right) and without (left) cerebral malaria, indicating areas of damage to the blood-brain barrier

For Americans and others living outside the tropics, a mosquito bite is nothing more than an itchy inconvenience, but for billions of others, it can lead to a life-or-death battle with malaria. In some cases, the illness can wreak havoc on the brain. A new IRP study has used magnetic resonance imaging (MRI) technology to demonstrate that an investigational therapy can reverse that damage in mice.

What's It Like Arriving on NIH's Bethesda Campus?

Tuesday, January 8, 2019

We recently sat down with a handful of NIH IRP researchers and support staff to talk about what it’s like to work in the IRP. These meetings between mostly strangers who work at the same massive research campus near Washington, D.C., highlight a wonderful quality of the IRP: Everywhere you go, there are numerous other people who share a love of science and a drive to improve human health, yet also come from markedly different backgrounds and offer wide-ranging perspectives. IRP researchers who reach out to learn from their diverse colleagues and share their thoughts and experiences often find new collaborators and other rewards.

What's New In the NIH Archives

Wednesday, January 2, 2019

The waning weeks of 2018 were busy ones in the Office of NIH History. We're constantly receiving and cataloguing new donations of historic equipment, images, publications, and more. It’s time to see what our donors have given us lately!


"I thought why could you not invert the concept? Instead of laying down hundreds or thousands of probes, how about laying down hundreds or thousands of tissue spots and probing them one antibody or gene probe at a time," remembers Dr. Juha Kononen of the National Human Genome Research Institute (NHGRI) about his idea that led to this prototype manual microarray. Tissue array technology performs rapid molecular profiling of hundreds of normal and pathological tissue specimens or cultured cells. Dr. Kononen worked with Drs. Olli Kallioniemi and Stephen B. Leighton to design this tissue microarray which was initially used in the Cancer Genomics Branch. Now, the National Cancer Institute's Tissue Array Research Program (TARP) develops and distributes multi-tumor tissue microarray slides to cancer researchers based on this technology. The quote comes from a 2002 article published in The Scientist.

tissue microarray

Science by the Numbers: Modeling Complex Biological Processes

Monday, December 17, 2018

computer microchip with binary code

Science is a process of trial and error. Most successful research publications are preceded by at least a few false starts and perhaps weeks or even months of tinkering to get experiments to work. For IRP senior investigator Carson Chow, Ph.D., this process of testing and throwing out one potential solution after another is an essential part of his research, so much so that he may go through thousands of iterations before arriving at one that works. However, rather than test each approach himself, he leverages the IRP’s considerable computing power to considerably accelerate the process of sorting the wheat from the chaff.

Life of a Postbac: My Experience Joining the NIH Family

Thursday, December 13, 2018

Lindsey Jay working in her lab

It was picture day, and I sat stiffly in front of a wrinkly blue curtain, nervously patting my hair into place. “You can smile, but just make sure no teeth are showing,” the person taking my picture told me. I laughed at that, and she also laughed, adding, “Everyone gets a good chuckle out of that one,” as she snapped my photo. A few days later, I picked up my photo, printed (not so) nicely with a vertical stripe running down my face. I didn’t even notice. I thought, this is real, as I proudly held up my official NIH ID badge.

Diabetes Drug Helps Patients by Modifying the Microbiome

Tuesday, December 11, 2018

bacteria in the digestive system

The more scientists have learned about the community of benign bacteria inside our bodies, known as the microbiome, the more effort they have put into recruiting it in the fight against disease. What’s more, scientists occasionally discover that treatments long thought to work completely independently of our native microbes also relieve symptoms by interacting with them. New IRP research into the most commonly used medication for type 2 diabetes has led to just such a revelation by demonstrating that its benefits stem in part from its ability to kill off a particular species of bacteria in the human digestive tract.

Three Billion Base Pairs vs. One Powerful Computer

Tuesday, November 27, 2018

a stand of DNA

The human genome comprises roughly three billion base pairs and around 20,000 protein-coding genes, according to recent estimates. That’s a lot of information crammed into the tiny nucleus of a cell, and it doesn’t even include the many genes that do not produce a protein or the fact that most genes come in multiple flavors that vary in different individuals. Add to that the phenomenon of an identical gene being either more or less active in two different people and you can quickly end up with genomic datasets that would overload nearly any computer. Fortunately for IRP senior investigator Daniel Levy, M.D., the NIH IRP has one of the few computer systems in the world that can handle this mountain of information.

Shedding Light on the Deep Darkness of Depression

Thursday, November 15, 2018

Dr. Carlos Zarate with a participant in a neuroimaging study

In 2016, more than one in twenty American adults and one in ten adolescents experienced at least one major depressive episode. For nearly 45,000 of these individuals, their condition was severe enough that it led them to take their own lives. Unfortunately, the medications currently available to treat depression are not always effective and can take up to six weeks to substantially reduce symptoms.

To improve treatment and accelerate symptom relief, IRP senior investigator Carlos Zarate Jr., M.D., is working towards the development of new medications for depression, along with the identification of new drug targets and objective measures called biomarkers that yield information about how a patient is responding to treatment. In recent years, his lab has extensively investigated and assessed the effects of the anesthetic drug ketamine on depression and suicidal thoughts. Many of the patients in his trials have had marked and rapid responses to ketamine, sometimes within a single day or just a couple of hours. 

On Tuesday, November 13, Dr. Zarate participated in a Reddit “Ask Me Anything” (AMA) to answer questions from the public about the way depression is currently treated and the latest efforts to develop cutting-edge therapies for the condition. Read on for some of the most interesting exchanges that took place or check out the full AMA on Reddit.

  • First page« First
  • Previous page‹ Previous
  • …
  • Page 3131
  • Page 3232
  • Page 3333
  • Page 3434
  • Current page35
  • Page 3636
  • Page 3737
  • Page 3838
  • Page 3939
  • …
  • Next pageNext ›
  • Last pageLast »

This page was last updated on Friday, January 14, 2022

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search