Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

Science by the Numbers: Modeling Complex Biological Processes

By Brandon Levy

Monday, December 17, 2018

computer microchip with binary code

Computers are valuable tools for modeling biological processes, says the IRP’s Dr. Carson Chow, and the more powerful the computer, the more complex the model can be.

Science is a process of trial and error. Most successful research publications are preceded by at least a few false starts and perhaps weeks or even months of tinkering to get experiments to work. For IRP senior investigator Carson Chow, Ph.D., this process of testing and throwing out one potential solution after another is an essential part of his research, so much so that he may go through thousands of iterations before arriving at one that works. However, rather than test each approach himself, he leverages the IRP’s considerable computing power to considerably accelerate the process of sorting the wheat from the chaff.

Whereas most research scientists are specialists, devoting their careers to the study of one specific aspect of their field, Dr. Chow is more of a jack-of-all-trades. At any one time, he might be studying the genetics of obesity, scrutinizing the timing of gene activity, investigating the behavior of hormone receptors, or examining the biological basis of mental illnesses. To him, the one unifying factor in all these endeavors is math.

“The same math that describes heat flowing down a rod is the same math that describes molecules bouncing around your room is the same math that describes the passage of ions in neurons,” Dr. Chow says. “I’m like a carpenter — I work on different houses. Biologists work on just one house, but I work on whatever house is broken.”

Much of Dr. Chow’s work involves creating and testing mathematical models that represent biological systems. At the most basic level, a mathematical model takes a set of assumptions and turns them into an equation whose outcome can be tested to see if it matches what happens in the real world. For example, one model of weight loss asserts that a person who eats 3,500 fewer calories than his or her body uses will lose one pound of fat. A mathematical equation for this process might read as follows: (calories used – calories consumed) / 3500 = pounds lost. A scientist can then test this model by feeding a group of research volunteers 3,500 calories fewer than they need. If the volunteers lose one pound each on average, the model is correct. If not, it clearly needs some tweaking, and in fact research by Dr. Chow and others has suggested that this long-referenced model of weight loss is indeed incorrect.1,2

Supercomputers like NIH’s Biowulf system are a key part of this fine-tuning procedure. Their massive computing power allows researchers like Dr. Chow to test many models designed to represent a biological process, each slightly different from its counterparts, until they find one that nearly matches real-world observations. Specialized algorithms also help streamline this search by narrowing down the field of possibilities the computer must sort through.

“Sometimes you’ve got an equation and it’s got a lot of knobs, and you don’t know what the settings of the knobs should be,” Dr. Chow explains. “So what you do is you try all of the possible settings, and you just run a bunch of different versions until the outcome looks like what you expect. You use the computer to sweep through all the possibilities of the model. The more powerful the computer, the faster you can search and the more complex you can make the model.”

Much of Dr. Chow’s recent work has focused on creating mathematical models of how brain cells communicate with one another. In a paper published in September, for example, Dr. Chow enlisted Biowulf to develop of a network of model neurons that can fire in any of the ways scientists have observed real neurons firing, including mimicking the activity pattern of neurons involved in planning and executing movements.3 Once scientists have reasonably accurate models of the way healthy neurons behave, Dr. Chow says, researchers can “break” these models to make them behave the way collections of brain cells do in patients with mental illnesses like autism. This would then allow scientists to test their theories about what causes those conditions.

“It’s hard to make progress if you don’t have some underlying theory of what you think the system is doing,” Dr. Chow says. “Unless data is put into some context, it’s hard to use data. Having a theory is crucial for conceptualizing a disease, figuring out how to treat it, and knowing what to do next.”

Subscribe to our weekly newsletter to stay up-to-date on the latest breakthroughs in the NIH Intramural Research Program.

References:

[1] Quantification of the effect of energy imbalance on bodyweight. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, Swinburn BA. Lancet. 2011 Aug 27;378(9793):826-37. doi: 10.1016/S0140-6736(11)60812-X.

[2] Can a weight loss of one pound a week be achieved with a 3500-kcal deficit? Commentary on a commonly accepted rule. Thomas DM, Martin CK, Lettieri S, Bredlau C, Kaiser K, Church T, Bouchard C, Heymsfield SB. Int J Obes (Lond). 2013 Dec;37(12):1611-3. doi: 10.1038/ijo.2013.51.

[3] Learning recurrent dynamics in spiking networks. Kim CM, Chow CC. Elife. 2018 Sep 20;7. pii: e37124. doi: 10.7554/eLife.37124.


Category: IRP Discoveries
Tags: high-performance computing, Biowulf, computers, mathematics, mathematical modeling, mental illness, model, weight loss, neuroscience, neurons

Related Blog Posts

  • Supercomputing Pushes Pregnancy Research Forward
  • Three Billion Base Pairs vs. One Powerful Computer
  • Tracing the Neural Circuitry of Appetite
  • Metabolic Inflexibility Drives Increased Appetite
  • Moms’ Caffeine Consumption May Affect Babies’ Brains

This page was last updated on Tuesday, January 30, 2024

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search