Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Too Much of a Good Thing
      • Turning Face Perception on Its Head
      • Safeguarding a Second Chance at Life
      • A Biological Betrayal
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
        • Earl Stadtman Investigator Frequently Asked Questions
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

Biowulf

A Computational Approach to Curbing Chemotherapy’s Side Effects

Study Identifies Compounds That Could Aid Body’s Removal of Toxic Cancer Drugs

Tuesday, May 17, 2022

computer binary code

When it comes to cancer, the treatment can sometimes feel worse than the disease. Not only do chemotherapy drugs cause grueling side effects, but certain products made by otherwise benign bacteria living in our digestive system can interfere with the body’s ability to get rid of those toxic chemicals. A new IRP study used a cutting-edge computational approach to help identify compounds that inhibit one of those meddling bacterial molecules, which could eventually lead to the creation of medications that reduce some of chemotherapy’s side effects.

The Virus vs the Machine

IRP Leverages Supercomputing to Combat Coronavirus

Wednesday, August 19, 2020

rows of computer servers

Over the past six months, a tiny virus has completely upended life in the United States and many other countries. To combat this microscopic threat, some IRP researchers have turned to a tool the size of a small building.

Biowulf, the NIH’s supercomputer, is supporting more than a dozen different IRP research projects focused on the novel coronavirus. As the world’s most powerful supercomputer solely dedicated to biomedical research, Biowulf allows scientists to analyze data and run simulations at unprecedented speed. Two weeks ago, a blog post described how IRP investigators are using Biowulf to elucidate the structure of the novel coronavirus and simulate how potential therapeutics might interact with it. Picking up where that post left off, this blog will explore the application of Biowulf to important questions about the spread of COVID-19 and the way that its genes, along with our own, might influence its impact on the body.

IRP Supercomputer Enables Rapid Response to Coronavirus

Biowulf Lends Massive Computing Power to NIH Research Efforts

Monday, August 3, 2020

rows of computer servers

Nations around the world are bringing every weapon in their arsenals to the fight against the COVID-19 pandemic: vaccines, new and existing therapeutics, personal protective equipment like face masks, and enough hand sanitizer to fill the Atlantic Ocean. The NIH community is contributing to this unprecedented effort with a tool that no other research institution can claim: Biowulf, the world’s most powerful supercomputer solely dedicated to biomedical research.

Plugging the Gaps in the Human Genome

Supercomputing Helps IRP Researchers Complete Our Genetic Blueprints

Monday, April 22, 2019

DNA sequence

While the Human Genome Project accomplished a remarkable feat in sequencing all the genes in the human genome, technological limitations still left significant swaths of our genetic blueprints unexplored. Recent advances in DNA sequencing are starting to fill in those gaps, but these new technologies require new computational tools to make sense of the data they generate. That’s where computer scientists like the IRP’s Adam Phillippy, Ph.D., come in.

Supercomputing Pushes Pregnancy Research Forward

Tuesday, January 29, 2019

mother with baby

Virtually all parents would agree that having kids is a massive undertaking, and not just after they’re born. Many couples struggle to conceive, and each year thousands of American women experience complications when giving birth. With the help of the NIH’s state-of-the-art supercomputer, Biowulf, IRP senior investigator Rajeshwari Sundaram, Ph.D., develops and refines statistical tools that can guide prospective parents and their doctors through these challenges.

Science by the Numbers: Modeling Complex Biological Processes

Monday, December 17, 2018

computer microchip with binary code

Science is a process of trial and error. Most successful research publications are preceded by at least a few false starts and perhaps weeks or even months of tinkering to get experiments to work. For IRP senior investigator Carson Chow, Ph.D., this process of testing and throwing out one potential solution after another is an essential part of his research, so much so that he may go through thousands of iterations before arriving at one that works. However, rather than test each approach himself, he leverages the IRP’s considerable computing power to considerably accelerate the process of sorting the wheat from the chaff.

Three Billion Base Pairs vs. One Powerful Computer

Tuesday, November 27, 2018

a stand of DNA

The human genome comprises roughly three billion base pairs and around 20,000 protein-coding genes, according to recent estimates. That’s a lot of information crammed into the tiny nucleus of a cell, and it doesn’t even include the many genes that do not produce a protein or the fact that most genes come in multiple flavors that vary in different individuals. Add to that the phenomenon of an identical gene being either more or less active in two different people and you can quickly end up with genomic datasets that would overload nearly any computer. Fortunately for IRP senior investigator Daniel Levy, M.D., the NIH IRP has one of the few computer systems in the world that can handle this mountain of information.

Top-of-the-Line Supercomputer Turbocharges NIH Research

Wednesday, June 13, 2018

Access to robust computing resources provides a critical foundation for advancing the wide variety of biomedical research taking place within the NIH’s Intramural Research Program (IRP). Whether performing molecular modeling simulations, generating whole-genome sequencing data, deducing the structures of biomolecules, or advancing drug discovery efforts, our ability to analyze large-scale biological and biomedical data strongly depends on our ability to employ computationally intensive approaches that produce interpretable results and advance translational efforts aimed at improving human health.

NIH's supercomputer, Biowulf

Labradors, Terriers, and Boxers — Oh My! IRP Researchers Delve Into Doggy DNA

Monday, February 26, 2018

two breeds of dog that have massively differing physical traits

For over a decade, my family shared our home with a short, fat beagle named Kayla Sue. She had big floppy ears, a tail as straight as an exclamation point, and a coat of fur that was a patchwork of white, brown, and black splotches. Her love of chasing small animals was matched only by her enthusiasm for eating, napping, and belly rubs. One of my best friends growing up, on the other hand, had a mean-spirited Dachshund named Rocky who would not let anyone outside his family touch his long, brown, sausage-shaped body. Meanwhile, one of my brother’s close childhood friends had two humongous, overly-friendly, black-and-brown German shepherds that would immediately bowl you over when you walked through the front door.

It doesn’t take a particularly sharp observer to notice that, despite being the same species, the more than 300 breeds of dog have remarkably different physical and behavioral traits. But what remains less clear even today are the specific biological roots that produce these widely varying attributes. And, perhaps more importantly, scientists seek to understand how learning about that immense diversity might help us improve the health of our canine companions – and ourselves.

Blog menu

  • Contributing Authors
    • Alison Jane Martingano
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Dianne Lee
    • Gabrielle Barr
    • Melissa Glim
    • Michele Lyons
  • Categories
    • Collaboration
    • Science
    • Resources
    • Making a Difference
    • Careers

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search