Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Too Much of a Good Thing
      • Turning Face Perception on Its Head
      • Safeguarding a Second Chance at Life
      • A Biological Betrayal
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
        • Earl Stadtman Investigator Frequently Asked Questions
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

biomarkers

Mouse Study Supercharges Neurons to Detect Parkinson’s Disease

Pushing Cells to Their Limits Could Enable Earlier Diagnosis and Treatment

Tuesday, March 29, 2022

overloaded lightbulb

If the many stories of mothers lifting cars to save their trapped children prove anything, it’s that we cannot know the true capabilities of our bodies until they are put to the test. This concept, it turns out, could be the key to much earlier diagnosis for Parkinson’s disease. By stimulating specific neurons to push them to their limits, IRP researchers were able to detect Parkinson’s in mice in its very early stages, opening up the possibility that a similar test could one day allow human patients to begin treatment before the disease has caused too much damage.

IRP Grad Students Present a Scientific Smorgasbord

Virtual Symposium Showcases Scientists-in-Training

Monday, March 8, 2021

IRP graduate students Khalin Nisbett, Julia Gross, Luis Rivera García, and Temesgen Andargie

Even in the midst of a global pandemic, life at NIH goes on. IRP researchers continue to run experiments, publish scientific papers, and train the next generation of scientists, including the many graduate students performing research in IRP labs through the Graduate Partnership Program. On February 17 and 18, more than 100 of these scientists-in-training presented their work virtually at the NIH’s 17th annual Graduate Student Research Symposium. Like last year’s entirely online Postbac Poster Day, the event overcame the constraints of COVID-19 precautions to showcase a broad range of research, including several studies focused on the novel coronavirus.

Alzheimer’s Patients Show Traces of Cellular Batteries in Blood

Biomarker Discovery Could Aid Diagnosis and Therapeutic Development

Tuesday, February 16, 2021

extracellular vesicles containing genetic material

Our cells can’t afford to be wasteful, so they prefer to recycle broken components. However, when the mitochondria that provide their energy are damaged beyond repair, cells may have no choice but to throw them out. New IRP research suggests that more of this mitochondrial debris floats in the blood of patients with Alzheimer’s disease, potentially providing an easy, cost-effective way to diagnose or even possibly predict the illness.

Blood Test Predicts Premature Labor

First-Trimester Blood Analysis Could Enable Earlier, More Effective Intervention

Tuesday, October 20, 2020

mother and baby sleeping next to each other

Imagine a world in which pregnant women routinely travel to places of healing and meet with wise sages who examine a bit of their blood to divine when their babies will be born. While this may sound like something out of Greek mythology, it may soon become a reality, as IRP researchers have developed a test that was able to use blood samples taken early in pregnancy to identify women who would later deliver their babies prematurely.

Cellular Garbage Aids Quest for Alzheimer’s Blood Test

Experimental Approach Predicts Future Alzheimer’s Diagnoses

Tuesday, October 15, 2019

exosomes

If you looked through my garbage, you would probably find a litany of apple cores (my favorite fruit) and a couple fundraising requests from my alma mater. Similarly, scientists can learn a lot about what is going on in cells by examining their trash. IRP researchers recently developed a blood test that may be able to predict Alzheimer’s disease years before the onset of symptoms by examining packages of waste products from neurons.

Poster Day Showcases Summer Student Science

Annual Event Shares Research by IRP’s Summer Interns

Tuesday, August 13, 2019

IRP summer intern Enat Ayele

NIH’s Natcher Conference Center was packed once again last Thursday for the annual Summer Poster Day. This year, more than 1,200 college and high school students spent their summer performing research in an IRP lab through the NIH’s Summer Internship Program. 

I navigated through the more than 900 posters presented this year to get a taste of the impressive work done by these young men and women in less than three months. If they can make these kinds of discoveries in just one summer, imagine what they might one day accomplish as full-time scientists and clinicians!

On the Cusp of Customized Concussion Care

Five Questions With Dr. Jessica Gill

Wednesday, July 17, 2019

football players

Each year, millions of Americans suffer sports-related concussions, and the number of youth suffering from these traumatic brain injuries has been rising. Blows to the head are common in sports such as football and hockey, and when these forces are strong enough to cause a concussion, they can harm the brain and impair cognitive functioning. Although concussions occur in staggering numbers, scientists do not fully understand what happens to the brain at the time of concussion or during the recovery period. However, that doesn’t mean they’re not trying.

Cholesterol Molecule Yields Insights Into Distressed Lungs

Potential biomarker may contribute to personalized treatments

Tuesday, February 5, 2019

diagram of fluid buildup in the lungs' air sacs

Until recently, medical treatment has largely been one-size-fits-all, with doctors unable to separate patients into distinct groups that might benefit more or less from a particular approach. However, researchers are increasingly finding that individuals with the same disease can differ markedly in ways that might one day influence their care. A recent IRP study has identified a particular molecule that may have just such an impact for patients with damaged lungs.

Shedding Light on the Deep Darkness of Depression

Thursday, November 15, 2018

Dr. Carlos Zarate with a participant in a neuroimaging study

In 2016, more than one in twenty American adults and one in ten adolescents experienced at least one major depressive episode. For nearly 45,000 of these individuals, their condition was severe enough that it led them to take their own lives. Unfortunately, the medications currently available to treat depression are not always effective and can take up to six weeks to substantially reduce symptoms.

To improve treatment and accelerate symptom relief, IRP senior investigator Carlos Zarate Jr., M.D., is working towards the development of new medications for depression, along with the identification of new drug targets and objective measures called biomarkers that yield information about how a patient is responding to treatment. In recent years, his lab has extensively investigated and assessed the effects of the anesthetic drug ketamine on depression and suicidal thoughts. Many of the patients in his trials have had marked and rapid responses to ketamine, sometimes within a single day or just a couple of hours. 

On Tuesday, November 13, Dr. Zarate participated in a Reddit “Ask Me Anything” (AMA) to answer questions from the public about the way depression is currently treated and the latest efforts to develop cutting-edge therapies for the condition. Read on for some of the most interesting exchanges that took place or check out the full AMA on Reddit.

Sleep Apnea Produces Troubling Signs of Future Brain Disease

Tuesday, March 27, 2018

sleeping elderly couple

Like a bear leaves its ominous footprints in the snow, diseases and other biological processes often leave traces throughout our bodies. Recent technological and scientific advances have enabled clinicians to use measurements of these ‘biomarkers’ in their attempts to improve our health. A new study by IRP researchers revealed that patients with a sleep disorder called obstructive sleep apnea (OSA) have higher blood concentrations of certain biomarkers that may foreshadow poor brain health later in life.1

When people with OSA sleep, their throat muscles relax and block their windpipes, preventing proper breathing and often waking them up. As a result, these individuals get lower-quality sleep and their brains receive less oxygen at night.

“The overall idea is that those two conditions are not good for brain health, but nobody had really looked to see if some of the biomarkers we see in brain injury are also common in younger individuals with this type of disordered breathing,” says IRP Lasker Clinical Research Scholar Jessica Gill, Ph.D., R.N., the study’s senior author.

Blog menu

  • Contributing Authors
    • Alison Jane Martingano
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Dianne Lee
    • Gabrielle Barr
    • Melissa Glim
    • Michele Lyons
  • Categories
    • Collaboration
    • Science
    • Resources
    • Making a Difference
    • Careers

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search