Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

Untangling Alzheimer’s Disease — DNA Damage in Alzheimer’s

By Craig Myrum

Tuesday, September 20, 2016

While new discoveries about Alzheimer’s seem to be published on a daily basis, little progress has been made in finding effective treatments for Alzheimer’s and related dementias. Over a decade has passed since the last drug, memantine, was approved by the FDA to ameliorate the symptoms of Alzheimer’s. Although current drugs alleviate the symptoms of Alzheimer's in some people for a limited time, they do not treat the underlying disease or delay its progression.

Given that Alzheimer’s is such a complex disease with many causes and pathways, it is not surprising that the search for effective treatments has proven difficult. So I spoke with Drs. Yujun Hou and Hyundong Song, postdoctoral fellows in the IRP’s Laboratory of Molecular Gerontology at the National Institute on Aging (NIA) to learn more about their approaches to meeting the challenge.

“DNA is damaged in several different ways in patients with Alzheimer’s disease,” Hou explains, “suggesting that the body’s response to DNA damage is deficient and may be exacerbating the progression of Alzheimer’s.”

Drs. Hyundong Song and Yujun Hou (left to right) are postdoctoral fellows working to find ways that doctors may one day effectively treat Alzheimer’s disease.

Most current treatment strategies target the abnormal proteins deposited in the brain of Alzheimer's patients—Aβ and tau. While they are important targets for therapies, it is also important to explore novel treatment avenues, given the slow pace of the development for such treatments.

“We believe that drugs that repair DNA could be a novel therapeutic strategy for Alzheimer’s patients,” Song says.

To examine their hypothesis, Dr. Hou turns to a widely-used strain of mice in Alzheimer’s research that contains three mutations (APP Swedish, MAPT P301L, and PSEN1 M146V) associated with familial Alzheimer's—the rare, early-onset form of Alzheimer'sas opposed to the more common ‘sporadic’ Alzheimer’s disease. She treats the mice with drugs that enhance DNA repair, then compares the onset and progression of Alzheimer’s with the trajectory of the disease observed in untreated mice. Since the drug may have multiple effects, their laboratory is assessing a number of factors: changes in vasculature, modified neurotransmitter signaling, the extent of nuclear and mitochondrial DNA damage and repair pathways, the degree of Aβ and tau buildup, and changes in memory and motor function.

Hou and Song are motivated in their research by the growing social and economic toll the disease is taking on our world.

“Treatment is greatly needed,” Hou says. “Targeting DNA repair as a way to treat Alzheimer’s has not yet been widely pursued, so we are very optimistic and excited about its potential.”

References:

Hou, Y., Song, H., Croteau, D. L., Akbari, M., & Bohr, V. A. (2016). Genome instability in Alzheimer disease. Mechanisms of Ageing and Development, 2003. http://doi.org/10.1016/j.mad.2016.04.005


Category: Profiles
Tags: Alzheimer's, brain, dementia, FDA, memantine, treatments, gerontology, DNA, proteins, tau, memory, aging

Related Blog Posts

  • Untangling Alzheimer’s Disease — September is Alzheimer’s Awareness Month
  • Translating Genetic Findings Into Dementia Treatments
  • Exercise Releases Brain-Healthy Protein
  • Toxic Protein and Aging Combine Forces to Drive Brain Disease
  • Alzheimer’s Patients Show Traces of Cellular Batteries in Blood

This page was last updated on Wednesday, July 5, 2023

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search