Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram (external link)
  • Twitter (external link)
  • YouTube (external link)
  • LinkedIn (external link)

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

Brandon Levy

Brandon Levy is a Health Communications Specialist for the NIH’s Intramural Research Program, where he works to increase the IRP’s public profile and ensure IRP scientists get the recognition they deserve. He particularly enjoys writing about the cutting-edge research performed at NIH but also produces videos and content for social media. Before joining the IRP, he worked as a science writer in NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and as a postbaccalaureate Intramural Research Training Award (IRTA) fellow in NIH’s National Institute of Mental Health (NIMH), spending his days putting people inside giant magnets and sending magnetic waves into their brains to shed light on the mysteries of learning and memory. When he’s not hunched over a computer keyboard, Brandon enjoys singing in his acapella group, reading, honing his skills as an amateur chef, and over-obsessing about college basketball.


Posts By This Author

Innovation Awards Spark New Intramural Collaborations

Program Boosts Initiatives Supporting Researchers Across NIH

Tuesday, September 1, 2020

scientists talking in a lab

From Superbowl-winning football teams to comic book cohorts like The Avengers, combining the efforts of multiple talented individuals is a proven strategy for achieving remarkable results. It may come as no surprise, then, that the NIH’s Intramural Research Program (IRP) strongly encourages collaborations that breach the boundaries of its 24 Institutes and Centers. One example of these efforts is the Director’s Challenge Innovation Awards Program, which since 2009 has funded high-impact scientific projects that bring together researchers from across the IRP.

Synthetic Antibody Rallies Immune Cells Against Ovarian Cancer

Study Also Reveals Immunotherapy’s Target on Cancer Cells

Tuesday, August 25, 2020

antibodies

In the 1995 film The Usual Suspects, Kevin Spacey’s con man character famously remarks, “The greatest trick the Devil ever pulled was convincing the world he didn't exist.” The same could be said of cancer, which somehow persuades the body it is not a threat. Cutting-edge treatments called immunotherapies remove this façade and encourage the immune system to attack cancer cells. New IRP research in mice has demonstrated the promise of a new immunotherapy for treating ovarian cancer and identified a marker on cancer cells that could help clinicians identify patients who are most likely to benefit from the therapy.

The Virus vs the Machine

IRP Leverages Supercomputing to Combat Coronavirus

Wednesday, August 19, 2020

rows of computer servers

Over the past six months, a tiny virus has completely upended life in the United States and many other countries. To combat this microscopic threat, some IRP researchers have turned to a tool the size of a small building.

Biowulf, the NIH’s supercomputer, is supporting more than a dozen different IRP research projects focused on the novel coronavirus. As the world’s most powerful supercomputer solely dedicated to biomedical research, Biowulf allows scientists to analyze data and run simulations at unprecedented speed. Two weeks ago, a blog post described how IRP investigators are using Biowulf to elucidate the structure of the novel coronavirus and simulate how potential therapeutics might interact with it. Picking up where that post left off, this blog will explore the application of Biowulf to important questions about the spread of COVID-19 and the way that its genes, along with our own, might influence its impact on the body.

Immune Cells Produce Potent Packages of Anti-Inflammatory Molecule

Experimental Treatment Curbs Autoimmune Eye Disease in Mice

Tuesday, August 11, 2020

B cell

Our cells produce a wide range of chemicals necessary for good health, but when they cannot manufacture enough of these substances, scientists can use cells cultivated in their labs to pick up the slack. In a promising example of this approach, IRP scientists stimulated lab-grown immune cells to produce tiny bundles of an important anti-inflammatory molecule and used those packages to successfully treat a potentially blinding autoimmune disease in mice.

IRP Supercomputer Enables Rapid Response to Coronavirus

Biowulf Lends Massive Computing Power to NIH Research Efforts

Monday, August 3, 2020

rows of computer servers

Nations around the world are bringing every weapon in their arsenals to the fight against the COVID-19 pandemic: vaccines, new and existing therapeutics, personal protective equipment like face masks, and enough hand sanitizer to fill the Atlantic Ocean. The NIH community is contributing to this unprecedented effort with a tool that no other research institution can claim: Biowulf, the world’s most powerful supercomputer solely dedicated to biomedical research.

Electronic Cigarettes Lure Former Smokers Back to Old Habits

High-Tech Nicotine Delivery Technologies Raise Risk for Relapse

Tuesday, July 28, 2020

examples of electronic nicotine delivery systems (ENDS)

Scholars have long debated about the use of nuclear power, gene editing, and many other technologies that can have both positive and negative effects on society. Recently, researchers have been having similar discussions about the public health effects of electronic cigarettes. Adding to this debate, a new NIH study highlights a concerning drawback of e-cigarettes by showing they increase the risk that people who have successfully quit smoking will resume using tobacco products.

Psychological Stress Damages Brain’s Blood Vessels

Mouse Study Illuminates Potential Mechanism Behind Mood and Anxiety Disorders

Tuesday, July 14, 2020

red blood cells flowing through a blood vessel

Millions of Americans suffered from depression and anxiety even before COVID-19 began upending their lives. To make matters worse, the stresses of living through a pandemic might not only worsen mental health but could also wreak havoc on the brain itself. New IRP research has found that psychological stress damages blood vessels in the brains of mice and dramatically alters the behavior of genes in certain blood vessel cells.

A Multi-Front Effort to Combat Coronavirus

IRP Research Examines Pandemic From All Angles

Tuesday, July 7, 2020

scientist working in the lab

The sheer number of labs and wide variety of scientific perspectives in the IRP make it particularly well-suited to combating a disease like COVID-19, which is affecting patients’ health and the world around them in a huge number of ways. IRP researchers specializing in psychology, genetics, epidemiology, and many other disciplines are pursuing an array of strategies to learn more about the novel coronavirus.

IRP’s Andre Nussenzweig Elected to National Academy of Medicine

NIH Researcher Recognized for Investigation into Genomic Stability

Monday, June 29, 2020

Dr. Andre Nussenzweig

The National Academy of Medicine (NAM), first established in 1970 by the National Academy of Sciences as the Institute of Medicine (IOM), is comprised of more than 2,000 elected members from around the world who provide scientific and policy guidance on important matters relating to human health. Election to the NAM is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have not only made critical scientific discoveries but have also demonstrated a laudable commitment to public service.

IRP senior investigator Andre Nussenzweig, Ph.D., was one of four IRP researchers recently elected to the NAM. Dr. Nussenzweig leads the Laboratory of Genome Integrity at the National Cancer Institute (NCI), where he studies how cells repair a form of DNA damage called a double strand break (DSB). This type of insult, which severs both strands of the double-stranded DNA molecule, is one of the most dangerous. If not repaired properly, DSBs can kill cells or cause DNA to rearrange in ways that are associated with cancer. Moreover, while DSBs can be caused by chemotherapy drugs and radiation, they can also happen by random chance during the course of normal cellular processes. Intriguingly, not all parts of the DNA molecule are equally susceptible to this form of damage.

Facing Daytime Discrimination Linked to Sleep Struggles

IRP Study Examines Overlooked Contributor to Racial Health Disparities

Tuesday, June 23, 2020

African American woman sleeping

Recent news coverage of the deaths of George Floyd, Ahmaud Arbery, and Breonna Taylor, along with statistics reporting startlingly disproportionate death rates among black Americans infected with COVID-19, have made it clear that racial biases can be a matter of life and death. Meanwhile, it can be easy to overlook other, more subtle ways that discrimination can affect health, such as new IRP research that links instances of discrimination to poor sleep.

  • First page« First
  • Previous page‹ Previous
  • …
  • Page 99
  • Page 1010
  • Page 1111
  • Page 1212
  • Current page13
  • Page 1414
  • Page 1515
  • Page 1616
  • Page 1717
  • …
  • Next pageNext ›
  • Last pageLast »

This page was last updated on Wednesday, March 15, 2023

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email (email)
  • Print
  • Share Twitter (external link) Facebook (external link) LinkedIn (external link)

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services (external link)
  • National Institutes of Health (external link)
  • USA.gov (external link)

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure (external link)
  • Web Policies & Notices
  • Site Map
  • Search