Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Too Much of a Good Thing
      • Turning Face Perception on Its Head
      • Safeguarding a Second Chance at Life
      • A Biological Betrayal
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
        • Earl Stadtman Investigator Frequently Asked Questions
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
The NIH Catalyst: A Publication About NIH Intramural Research

National Institutes of Health • Office of the Director | Volume 21 Issue 3 • May–June 2013

New Methods

NIH Develops Improved Mouse Model of Alcoholic Liver Disease

BY ERIN BRYANT, NIAAA

Scientists may be better able to study how heavy drinking damages the liver using a new mouse model of alcohol drinking and disease developed by researchers from the National Institute on Alcohol Abuse and Alcoholism (NIAAA). The model incorporates chronic and binge drinking patterns that more closely approximate alcoholic liver disease in humans than any existing method. A report of the new model appears in the March issue of the journal Nature Protocols (1).

“The NIAAA model represents a significant advance in understanding the progression of alcoholic liver disease, which in severe cases can lead to liver failure and death,” said Kenneth R. Warren, acting director of the NIAAA. “By replicating both chronic and binge drinking, we are able to simulate the natural drinking patterns of many alcoholic hepatitis patients and the resulting liver injury.”

mouse drinking from a special container

ERIN BRYANT, NIAAA

A mouse drinks a liquid diet containing alcohol. Scientists at NIAAA have developed a feeding method that allows them to better study liver damage caused by heavy drinking.

The liver, which filters out harmful substances in the blood, plays a key role in breaking down alcohol. Alcoholic liver disease (ALD) refers to a broad range of liver injuries caused by drinking. Some forms are mild and reversible while others, such as cirrhosis, are life-threatening and irreversible. Fatty liver disease, an early form of ALD marked by a build-up of fat in liver cells, occurs in almost all heavy drinkers, but liver damage can usually be reversed if the individual stops drinking.

About 20–40 percent of heavy drinkers will develop more severe forms of ALD, including alcoholic hepatitis, which involves inflammation and swelling of the liver, and cirrhosis, which can lead to liver failure as scar tissue accumulates in the organ. Scientists do not completely understand why some people progress to more severe forms of ALD, although sex, obesity, genetic and dietary factors, and smoking may play a role.

“Many of the models for alcoholic liver disease currently used do not evoke the full range of symptoms or are expensive and technically difficult,” said senior author Bin Gao, chief of the NIAAA Laboratory of Liver Diseases.

In the most common model currently used, mice are allowed to feed for four to six weeks on a liquid diet that contains five percent ethanol. But this model doesn’t induce the kind of liver injury commonly caused by binge drinking; it only induces mild fat accumulation in liver cells, slightly elevated liver enzymes indicating damage, and little or no inflammation. Models that are better at replicating more severe forms of ALD involve infusing alcohol directly into the mouse’s stomach, which requires intensive medical care for the animals, high technical expertise, and costly equipment.

The NIAAA model, however, is simpler. It involves a 10-day feeding of an alcohol-containing liquid diet, followed by a single high-dose feeding of alcohol to approximate binge drinking. This results in a marked elevation of fatty liver and enzymes indicating liver injury.

“The NIAAA model is less costly, more time efficient, and easy to perform,” said Gao. “Importantly, it may more closely resemble the progression of human alcoholic hepatitis.” He noted that it may also be useful in studying damage to other organs caused by heavy drinking, including the heart, lungs, kidneys, pancreas, and central nervous system.

1. A. Bertola, S. Mathews, S.H. Ki, H. Wang, and B. Gao,“Mouse model of chronic and binge ethanol feeding (the NIAAA model),” Nat Protoc 8:627–637, 2013. [http://www.nature.com/nprot/journal/v8/n3/full/nprot.2013.032.html]

This page was last updated on Thursday, April 28, 2022

  • Issue Overview
  • Features
    • Collaboration Leads to Better Imaging
    • FAES Opens New Academic Center
    • Lin Asks Why: An Interview with NHGRI Scientist Paul Liu
    • Neal Young: Conquering Aplastic Anemia
    • The Perils of Nipah Virus and Ischemic Stroke
  • Departments
    • Announcements
    • Colleagues: Recently Tenured
    • From the Deputy Director for Intramural Research
    • New Methods
    • News You Can Use
    • NIH in History
    • Research Briefs
    • The SIG Beat
    • The Training Page
  • Issue Contents
  • Download this issue as a PDF

Catalyst menu

  • Current Issue
  • Previous Issues
  • About The NIH Catalyst
  • Contact The NIH Catalyst
  • Share Your Story
  • NIH Abbreviations

Catalyst links

  • Follow The NIH Catalyst

Subscribe Today!

Subscribe to The NIH Catalyst Newsletter and receive email updates.

Subscribe

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search