Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Ancient Genes, Modern Diseases
      • Too Much of a Good Thing
      • Safeguarding a Second Chance at Life
      • A Biological Betrayal
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
        • Earl Stadtman Investigator Frequently Asked Questions
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

skin

Overzealous Immune Cells Hamper Healing

Study Points to Treatment Targets for Impaired Healing Due to Diabetes

Tuesday, September 13, 2022

patient having his foot examined

Whether we’ve nicked a finger while chopping vegetables or wiped out riding a skateboard, we tend to take for granted that our injuries will eventually mend themselves. However, for a type of wound that often plagues patients with diabetes, healing is no sure thing. IRP researchers recently identified why certain immune cells shift from helpful healers into saboteurs in those injuries.

Introducing NIH’s Newest Lasker Scholars

Program Gives Boost to Early Stage Investigators

Monday, December 14, 2020

Alison Boyce, Ian Myles, Jacqueline Mays, Yogen Kanthi, and Stephanie Chung

If TV shows like The Voice and America’s Got Talent are any indication, there are many extremely talented people out there who could become huge successes if presented with the right opportunity. This is no less the case in science, with thousands of extremely bright individuals quietly toiling away in their mentors’ labs as they await the chance to establish research programs of their own.

Fortunately, initiatives like the NIH’s Lasker Clinical Research Scholars Program exist to boost promising young researchers on to the next stage of their careers. Every year, the Lasker program allows a small group of early stage physician-scientists to establish their own labs at the NIH and carry out independent clinical research there for at least five years.

The five talented investigators selected as 2020 Lasker Scholars are pursuing a wide range of research questions, from how the immune system influences blood clotting to the mechanisms driving a rare and devastating skeletal disorder. Read on to learn more about the latest crop of researchers ramping up IRP labs of their very own.

IRP’s Julie Segre Elected to the National Academy of Medicine

NIH Researcher Recognized for Investigation into the Skin Microbiome

Tuesday, October 27, 2020

Dr. Julie Segre

The National Academy of Medicine (NAM), first established in 1970 by the National Academy of Sciences as the Institute of Medicine (IOM), is comprised of more than 2,000 elected members from around the world who provide scientific and policy guidance on important matters relating to human health. Election to the NAM is considered one of the highest honors in the fields of health and medicine that recognizes individuals who have not only made critical scientific discoveries but have also demonstrated a laudable commitment to public service.

IRP senior investigator Julie Segre, Ph.D., was one of four IRP researchers elected to the NAM in 2019. Dr. Segre leads the Translational and Functional Genomics Branch at the National Human Genome Research Institute (NHGRI), where she studies the way in which the skin forms a barrier between the body and the environment. In particular, her research uses genetic sequencing to understand the bacterial and fungal microbes that live on human skin.

A New Understanding of What’s Living on Your Skin

Five Questions with Dr. Heidi Kong and Dr. Julia Segre

Monday, November 25, 2019

microbes within a human body

When people think of skin health, they often think of protecting it from harmful UV rays or finding ways to avoid the fine lines and wrinkles that often come with aging and sun exposure. However, there are many factors and illnesses that impact skin health, including eczema, a chronic condition that affects tens of millions of Americans and causes the skin to become red and so itchy that it can interfere with patients’ sleep.

To combat such conditions, IRP researchers have spent decades investigating what causes them in humans through techniques such as immunology, genetics, molecular biology, and structural biology. In a 2014 study of healthy volunteers, IRP investigators Julia Segre, Ph.D., and Heidi Kong, M.D., M.H.Sc., used the latest genomic techniques to investigate the collection of microorganisms living on healthy human skin, known as the skin microbiome, in an attempt to understand how this collection of bacteria, fungi, and viruses may contribute to skin health. From their interdisciplinary research, the team was able to show that the array of microbes living on human skin is extremely diverse, varying greatly from individual to individual and between different areas of the body. This research opened doors for additional studies exploring how changes in the skin microbiome contribute to both common and rare skin diseases.

Molecular Factors Underlie Mouth’s Head Start on Healing

Tuesday, August 14, 2018

magnified image of skin epithelial cells

As an impatient eater, I find myself burning or biting the inside of my mouth more often than I’d like. Fortunately, these injuries tend to heal within a day or two, whereas wounds like nicking my finger with a knife or scraping my knee seem to take a week or longer to disappear. My personal impressions have now been confirmed by a new NIH study that uncovered major differences in the way the mouth and skin repair themselves, pointing to potential therapeutic targets that could speed healing.

Six Paths Forward in Biomedical Research

Tuesday, April 4, 2017

NIH Clinical Center

Last month I moderated our annual retreat with the NIH Scientific Directors, those individuals tasked with leading their Institute or Center (IC)-based intramural research program. We were joined by many of the IC Clinical Directors. And this year we decided to do something a little different: listen to a series of talks about exciting, new IRP research.

Yasmine Belkaid Wins Sanofi–Institut Pasteur 2016 Award

Thursday, December 15, 2016

Yasmine Belkaid

Yasmine Belkaid, chief of the Mucosal Immunology Section in the NIAID Laboratory of Parasitic Diseases, has won the Sanofi–Institut Pasteur 2016 International Mid-Career Award for “outstanding research in the life sciences…contributing to progress in global public health,” announced on December 13, 2016 in Paris.

Microbiome: The Next Frontier in Human Health

Thursday, December 24, 2015

At the beginning of every episode of the sci-fi series Star Trek, William Shatner repeated the words, “Space: the final frontier.” However, in all of Star Trek’s 79 episodes, Captain James T. Kirk and crew never encountered anything like the number and diversity of species that exists within the human microbiome.

Microbiome video

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • Collaboration
    • Science
    • Resources
    • Making a Difference
    • Careers

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search