Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Too Much of a Good Thing
      • Turning Face Perception on Its Head
      • Safeguarding a Second Chance at Life
      • A Biological Betrayal
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
        • Earl Stadtman Investigator Frequently Asked Questions
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

Brain Data Predicts Alcohol Disorder Symptoms

Study Results Could Help Improve Treatment for Alcohol-Related Problems

By Brandon Levy

Tuesday, April 16, 2019

MRI images showing connectivity between different parts of the brain

IRP researchers discovered that the interactions of different brain regions when the brain is not engaged in a task could be used to predict the severity of individuals’ alcohol-related problems.

Your brain is always busy, even when you’re not thinking about anything. Scientists believe the way brain cells communicate with one another when the brain is in that ‘resting state’ might differ in individuals with certain diseases. In a recent study of this idea, IRP researchers found that resting state brain activity could effectively predict the severity of alcohol-related problems.1

While most people can consume alcohol without it dramatically reducing their quality of life, those with alcohol use disorder (AUD) struggle to control their drinking and experience significant repercussions from it. An estimated 16 million Americans have AUD, but fewer than one in ten receive treatment. Moreover, current treatments are sometimes not effective or yield only small benefits.

Some scientists are attempting to solve these problems by comparing the brains of people with AUD to those without the illness. The IRP’s Reza Momenan, Ph.D., is among the relatively few researchers studying how the brain behaves differently in people with more severe AUD symptoms compared to those with less serious symptoms. In his new study, Dr. Momenan and his team examined the brains of people with alcohol-related problems using several neuroimaging techniques in order to identify the brain changes that most strongly relate to the severity of a person’s struggles with alcohol.

“The goal was to capture the contribution of each of these modalities to provide a more sensitive and comprehensive index of severity,” Dr. Momenan explains. “We are trying to provide a quantitative and objective measure of the state of the disease.”

Participants in the study first filled out a standard questionnaire called the Alcohol Use Disorders Identification Test (AUDIT) that measures problematic drinking behaviors and their consequences. The participants then underwent MRI scans that analyzed the physical structure of their brains as well as how active different parts of their brains were during two different tasks. In addition, the researchers collected ‘resting state connectivity’ data, which measures the extent to which different parts of the brain communicate with one another when a person is not doing anything. Past research had grouped those brain regions into various networks, and the activity within them depends on what a person is doing. For example, the brain structures in the executive control network talk to one another when a person is making plans or exerting self-control, while the default mode network is active only when people are not thinking about anything at all.

After completing the scans, the IRP researchers fed the data from 59 of their participants into a machine learning algorithm to create several mathematical models that related the various neuroimaging measures to the participants’ scores on the AUDIT questionnaire. Three of the models took into account only one type of the neuroimaging data, while another included only demographic information like age and gender. A final model took into account all this information.

Finally, the researchers had each of the models attempt to use the data collected from a separate set of 24 participants to predict their AUDIT scores. In the end, the model that included only the resting state connectivity data yielded the best predictions and identified several brain networks that work differently in individuals with more severe AUD symptoms compared to those with milder symptoms.

“These alterations point to compromises in cognition, decision making, impulse control, and compulsive behavior in those with more serious AUD symptoms,” Dr. Momenan says.

Despite its successes, the resting state connectivity model only accounted for a third of the variation in AUD symptoms among the participants, so future studies that include more individuals will attempt to identify other factors related to AUD symptom severity. Once enough data has been gathered, mathematical models like those Dr. Momenan’s team created could prove extremely useful to clinicians.

“The ability to use neural data to indicate AUD severity can be beneficial in medical settings to understand disorder severity without depending on self-reports,” Dr. Momenan says. “This, in turn, will provide an index of risk prediction, disease progress, treatment efficacy, and recovery. Accordingly, the clinicians will be further enabled to plan and implement the most suitable course of action.”

Subscribe to our weekly newsletter to stay up-to-date on the latest breakthroughs in the NIH Intramural Research Program.

References:

[1] Resting state connectivity best predicts alcohol use severity in moderate to heavy alcohol users. Fede SJ, Grodin EN, Dean SF, Diazgranados N, Momenan R. Neuroimage Clin. 2019 Mar 19;22:101782. doi: 10.1016/j.nicl.2019.101782. [Epub ahead of print]


Category: Science
Tags: alcohol, alcohol abuse, neuroscience, fMRI, MRI, machine learning

Related Blog Posts

  • NIH Summer Interns Show Off in Poster Exhibitions
  • Neuronal Building Block Underlies Alcohol Addiction
  • Examining the Roots of Opioid Use Disorder
  • Moms’ Caffeine Consumption May Affect Babies’ Brains
  • Teaming Up to Tackle Engineering Challenges

This page was last updated on Monday, March 14, 2022

Blog menu

  • Contributing Authors
    • Alison Jane Martingano
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Dianne Lee
    • Gabrielle Barr
    • Melissa Glim
    • Michele Lyons
  • Categories
    • Collaboration
    • Science
    • Resources
    • Making a Difference
    • Careers

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search