In the News

Research advances from the National Institutes of Health (NIH) Intramural Research Program (IRP) often make headlines. Read the news releases that describe our most recent findings:

Featured Article

Yes, Cooking Can Help Improve Your Mental Health — Here’s What Health Professionals Have to Say About It

Food & Wine
November 7, 2024

The act of cooking offers the chance to unwind and create something special, whether you’re planning to feed a crowd or just yourself. And while you may have noticed feeling good after whipping up that perfect pie or braise, there’s actually a lot of scientific data to suggest that cooking can have a positive impact on mental health. 

One meta-analysis (a report of pre-existing research) from the National Institutes of Health looked at 11 studies and found that “cooking interventions” — encouraging people to follow certain recipes or giving people cooking classes — can improve a person’s mental well-being. It specifically found that people who participated in cooking interventions reported having better self-esteem and quality of life, as well as a more positive emotional state after the fact. Another study even discovered that baking can help raise a person’s confidence level. 

Longer daily fasting times improve health and longevity in mice

Increasing time between meals made male mice healthier overall and live longer compared to mice who ate more frequently, according to a new study published in the Sept. 6, 2018 issue of Cell Metabolism. Scientists from the National Institute on Aging (NIA) at the National Institutes of Health, the University of Wisconsin-Madison, and the Pennington Biomedical Research Center, Baton Rouge, Louisiana, reported that health and longevity improved with increased fasting time, regardless of what the mice ate or how many calories they consumed.

“This study showed that mice who ate one meal per day, and thus had the longest fasting period, seemed to have a longer lifespan and better outcomes for common age-related liver disease and metabolic disorders,” said NIA Director Richard J. Hodes, M.D. “These intriguing results in an animal model show that the interplay of total caloric intake and the length of feeding and fasting periods deserves a closer look.”

The scientists randomly divided 292 male mice into two diet groups. One group received a naturally sourced diet that was lower in purified sugars and fat, and higher in protein and fiber than the other diet. The mice in each diet group were then divided into three sub-groups based on how often they had access to food. The first group of mice had access to food around the clock. A second group of mice was fed 30 percent less calories per day than the first group. The third group was meal fed, getting a single meal that added up to the exact number of calories as the round-the-clock group. Both the meal-fed and calorie-restricted mice learned to eat quickly when food was available, resulting in longer daily fasting periods for both groups.

Genetics and pollution drive severity of asthma symptoms

Asthma patients, with a specific genetic profile, exhibit more intense symptoms following exposure to traffic pollution, according to researchers at the National Institutes of Health and collaborators. The study appeared online in Scientific Reports.

The research team, made up of scientists from the National Institute of Environmental Health Sciences (NIEHS), part of NIH, and Rice University, Houston, also found that asthma patients that lack this genetic profile do not have the same sensitivity to traffic pollution and do not experience worse asthma symptoms. The work brings scientists closer to being able to use precision medicine, an emerging field that intends to prevent and treat disease based on factors specific to an individual.

Co-lead author Shepherd Schurman, M.D., associate medical director of the NIEHS Clinical Research Unit, stated the results are based on genetic variation, the subtle differences in DNA that make each person unique. He further added that to understand the concept, one should think of human genes, which are made up of DNA base pairs A, C, G, and T, as written instructions for making proteins.

graphic depicting the relationship between genes, air pollution, and asthma

The research suggests when individuals with specific variations in certain genes are exposed to traffic pollution, they display more intense asthma symptoms than people that lack those same gene variations.

EXP2 protein helps deadliest malaria parasite obtain nutrients during infection

IRP study identifies potential new target for malaria drug development

Researchers from the National Institutes of Health and other institutions have deciphered the role of a key protein that the malaria parasite Plasmodium falciparum uses to obtain nutrients while infecting red blood cells. Their study appears in Nature Microbiology.

According to the World Health Organization, in 2016 there were an estimated 216 million malaria cases and 445,000 malaria deaths. P. falciparum is responsible for most malaria-related deaths globally.

The parasite remodels the red blood cell it infects to obtain nutrients. During this process, the parasite secretes hundreds of proteins that need to be transported from the vacuole, the compartment in which the parasite resides, to the interior of the cell. A group of proteins, called the Plasmodium translocon of exported proteins (PTEX), has been shown to be essential for transporting materials to and from the vacuole. Previous studies have uncovered the function of one of the proteins in the PTEX group to reshape proteins for transport, but the function of other proteins in the group have not been well understood.

In the current study, researchers analyzing blood cell cultures from healthy people determined that the PTEX protein EXP2 forms a channel in the vacuole membrane, which allows for passage of proteins and cellular nutrients to supply the parasite. The researchers hope that their discovery will lead to the development of new drugs to prevent formation of the channel and block the transport of nutrients and proteins to the parasite.

diagram of a red blood cell infected with a malaria parasite

Researchers at NIH have determined that the protein EXP2 forms a channel in the vacuole membrane, which allows for passage of proteins and cellular nutrients to supply the parasite.

IRP-led research team develops predictor for immunotherapy response in melanoma

In a new study, researchers developed a gene expression predictor that can indicate whether melanoma in a specific patient is likely to respond to treatment with immune checkpoint inhibitors, a novel type of immunotherapy. The predictor was developed by Noam Auslander, Ph.D., with other researchers in the Center for Cancer Research (CCR) at the National Cancer Institute (NCI), part of the National Institutes of Health, and colleagues at Harvard University, Cambridge, Massachusetts; the University of Pennsylvania, Philadelphia; and the University of Maryland, College Park. The study was published Aug. 20, 2018 in Nature Medicine.

“There is a critical need to be able to predict how cancer patients will respond to this type of immunotherapy,” said Eytan Ruppin, M.D., Ph.D., of NCI’s newly established Cancer Data Science Laboratory, who led the study. “Being able to predict who is highly likely to respond and who isn’t will enable us to more accurately and precisely guide patients’ treatment.”

Treatment with checkpoint inhibitors is effective for some patients with late-stage melanoma and certain other types of cancer. However, not all patients with melanoma respond to this treatment, and it can have considerable side effects. But developing a predictor of response has been challenging, partly because of the limited number of patients who have received this relatively new form of treatment.

Blood test may identify gestational diabetes risk in first trimester

IRP analysis suggests early screening could allow for lifestyle changes before condition develops

A blood test conducted as early as the 10th week of pregnancy may help identify women at risk for gestational diabetes, a pregnancy-related condition that poses potentially serious health risks for mothers and infants, according to researchers at the National Institutes of Health and other institutions. The study appears in Scientific Reports.

Gestational diabetes occurs only in pregnancy and results when the level of blood sugar, or glucose, rises too high. Gestational diabetes increases the mother’s chances for high blood pressure disorders of pregnancy and the need for cesarean delivery, and the risk for cardiovascular disease and type 2 diabetes later in life. For infants, gestational diabetes increases the risk for large birth size. Unless they have a known risk factor, such as obesity, women typically are screened for gestational diabetes between 24 and 28 weeks of pregnancy.

In the current study, researchers evaluated whether the HbA1c test (also called the A1C test), commonly used to diagnose type 2 diabetes, could identify signs of gestational diabetes in the first trimester of pregnancy. The test approximates the average blood glucose levels over the previous 2 or 3 months, based on the amount of glucose that has accumulated on the surface of red blood cells. According to the authors, comparatively few studies have examined whether the HbA1c test could help identify the risk for gestational diabetes, and these studies have been limited to women already at high risk for the condition. The test is not currently recommended to diagnose gestational diabetes at any point in pregnancy.

That stinks! 1 in 15 Americans smell odors that aren’t there

IRP study reveals prevalence of and risk factors for phantom odor perception

Imagine the foul smell of an ash tray or burning hair. Now imagine if these kinds of smells were present in your life, but without a source. A new study finds that 1 in 15 Americans (or 6.5 percent) over the age of 40 experiences phantom odors. The study, published in JAMA Otolaryngology-Head and Neck Surgery, is the first in the U.S. to use nationally representative data to examine the prevalence of and risk factors for phantom odor perception. The study could inform future research aiming to unlock the mysteries of phantom odors.

The study was led by Kathleen Bainbridge, Ph.D., of the Epidemiology and Biostatistics Program at the National Institute on Deafness and Other Communication Disorders (NIDCD), part of the National Institutes of Health. Bainbridge and her team used data from 7,417 participants over 40 years of age from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). The NHANES data were collected by the National Center for Health Statistics, which is part of the Centers for Disease Control and Prevention; data collection was partly funded by the NIDCD.

"Problems with the sense of smell are often overlooked, despite their importance. They can have a big impact on appetite, food preferences, and the ability to smell danger signals such as fire, gas leaks, and spoiled food,” said Judith A. Cooper, Ph.D., acting director of the NIDCD.

IRP study shows how MERS coronavirus evolves to infect different species

In the past 15 years, two outbreaks of severe respiratory disease were caused by coronaviruses transmitted from animals to humans. In 2003, SARS-CoV (severe acute respiratory syndrome coronavirus) spread from civets to infect more than 8,000 people, leading to a year-long global public health emergency. MERS-CoV (Middle East respiratory syndrome coronavirus), first identified in 2012, consistently jumps from dromedary camels to people, resulting in periodic outbreaks with a roughly 35 percent fatality rate. Evidence suggests that both viruses originated in bats before transmitting to civets and camels, respectively. While many other coronaviruses in nature are not known to infect people, MERS-CoV and SARS-CoV are notable for their ability to infect a variety of different species, including humans.

New research published in Cell Reports from scientists at the National Institute of Allergy and Infectious Diseases (NIAID) shows how MERS-CoV can adapt to infect cells of a new species, which suggests that other coronaviruses might be able to do the same.

vampire bat next to illustration of coronavirus interacting with human DPP4 receptor

This illustration shows the bat species used in the study, Desmodus rotundus, or vampire bat, and representations of MERS-CoV (purple) interacting with host receptor DPP4 (gold).

During HIV infection, antibody can block B cells from fighting pathogens

For the first time, scientists have shown that in certain people living with HIV, a type of antibody called immunoglobulin G3 (IgG3) stops the immune system’s B cells from doing their normal job of fighting pathogens. This phenomenon appears to be one way the body tries to reduce the potentially damaging effects of immune-system hyperactivity caused by the presence of HIV, according to the investigators, but in so doing, it also impairs normal immune function.

The research was led by scientists in the Laboratory of Immunoregulation and the Laboratory of Immunogenetics at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

The investigators made their discovery by analyzing blood samples from 83 HIV-uninfected, anonymous donors and 108 people who were living with HIV at various stages of infection. The people living with HIV came from a variety of racial and ethnic backgrounds. Some of these people were being treated for their infection, while others had not yet begun therapy.

Colorized scanning electron micrograph of a B cell from a human donor

Colorized scanning electron micrograph of a B cell from a human donor.

Induced labor at 39 weeks may reduce likelihood of C-section, IRP study suggests

Elective induction at 39 weeks also linked to lower risk of maternal high blood pressure disorders

Healthy first-time mothers whose labor was induced in the 39th week of pregnancy were less likely to deliver by cesarean section, compared to those who waited for labor to begin naturally, according to a study funded by the National Institutes of Health. Researchers also found that infants born to women induced at 39 weeks were no more likely to experience stillbirth, newborn death or other severe complications, compared to infants born to uninduced women. The study results, which were presented earlier in brief form, now appear in detail in the New England Journal of Medicine.

“Prior to this study, there was concern that induction of labor would increase the chance of cesarean delivery,” said study author Uma M. Reddy, M.D., of the Pregnancy and Perinatology Branch of NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). “Our analysis suggests that elective induction at 39 weeks is associated with a lower rate of cesarean delivery and does not increase the risk of major complications for newborns.”

IRP researchers discover highly infectious vehicle for transmission of viruses among humans

Membrane-bound virus clusters provide promising target for the treatment of gastroenteritis, other diseases

Researchers have found that a group of viruses that cause severe stomach illness — including the one famous for widespread outbreaks on cruise ships — get transmitted to humans through membrane-cloaked “virus clusters” that exacerbate the spread and severity of disease. Previously, it was believed that these viruses only spread through individual virus particles. The discovery of these clusters, the scientists say, marks a turning point in the understanding of how these viruses spread and why they are so infectious. This preliminary work could lead to the development of more effective antiviral agents than existing treatments that mainly target individual particles.

The researchers studied norovirus and rotavirus — hard-to-treat viruses that are the most common cause of stomach illness, or gastroenteritis, and that afflicts millions of people each year. The viruses cause symptoms ranging from diarrhea to abdominal pain and can sometimes result in death, particularly among young children and the elderly. Their highly contagious nature has led to serious outbreaks in crowded spaces throughout many communities; most notably in cruise ships, daycare centers, classrooms, and nursing homes. Fortunately, vaccines against rotavirus are now available and are routinely given to babies in the United States.

“This is a really exciting finding in the field of virology because it reveals a mode of virus spread that has not been observed among humans and animals,” said study leader Nihal Altan-Bonnet, Ph.D., senior investigator and head of the Laboratory of Host-Pathogen Dynamics at the National Heart, Lung, and Blood Institute (NHLBI). “We hope that it will provide new clues to fighting a wide range of diseases involving many types of viruses, including those that cause gastrointestinal illnesses, heart inflammation, certain respiratory illnesses, and even the common cold.”

viruses packaged into clusters in vesicles

Continue Exploring the IRP

This page was last updated on Thursday, December 26, 2024