Research advances from the National Institutes of Health (NIH) Intramural Research Program (IRP) often make headlines. Read the news releases that describe our most recent findings:
The act of cooking offers the chance to unwind and create something special, whether you’re planning to feed a crowd or just yourself. And while you may have noticed feeling good after whipping up that perfect pie or braise, there’s actually a lot of scientific data to suggest that cooking can have a positive impact on mental health.
One meta-analysis (a report of pre-existing research) from the National Institutes of Health looked at 11 studies and found that “cooking interventions” — encouraging people to follow certain recipes or giving people cooking classes — can improve a person’s mental well-being. It specifically found that people who participated in cooking interventions reported having better self-esteem and quality of life, as well as a more positive emotional state after the fact. Another study even discovered that baking can help raise a person’s confidence level.
National Institutes of Health scientists and their collaborators found that hepatitis B virus (HBV)-associated acute liver failure (ALF) — a rare condition that can turn fatal within days without liver transplantation — results from an uncommon encounter between a highly mutated HBV variant and an unusual immune response in the patient’s liver that is mainly sustained by antibody-producing B cells.
By applying state-of-the-art technologies, the researchers discovered important new mechanisms about the disease by examining liver samples taken from four patients who developed HBV-ALF. HBV-ALF is one of the most dramatic clinical syndromes in medicine, according to the research team, but so rare that samples of this type are seldom available for study.
New research suggests that infant girls fed soy formula are more likely to develop severe menstrual pain as young adults. The finding adds to the growing body of literature that suggests exposure to soy formula during early life may have detrimental effects on the reproductive system. The study appears online in the journal Human Reproduction.
Scientists at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, along with collaborators from Vanderbilt University Medical Center in Nashville, Tennessee, and the Henry Ford Health System in Detroit, examined data from 1,553 African-American women, aged 23-35, participating in the NIEHS Study of Environment, Lifestyle, and Fibroids (SELF).
The researchers found that women who had ever been fed soy formula as babies were 50 percent more likely to have experienced moderate or severe menstrual discomfort between the ages of 18 and 22, and 40 percent more likely to have used hormonal contraception to help alleviate menstrual pain.
NTP releases final reports on rat and mouse studies of radio frequency radiation like that used in 2G and 3G cell phone technologies.
The National Toxicology Program (NTP) concluded there is clear evidence that male rats exposed to high levels of radio frequency radiation (RFR) like that used in 2G and 3G cell phones developed cancerous heart tumors, according to final reports released today. There was also some evidence of tumors in the brain and adrenal gland of exposed male rats. For female rats, and male and female mice, the evidence was equivocal as to whether cancers observed were associated with exposure to RFR. The final reports represent the consensus of NTP and a panel of external scientific experts who reviewed the studies in March after draft reports were issued in February.
“The exposures used in the studies cannot be compared directly to the exposure that humans experience when using a cell phone,” said John Bucher, Ph.D., NTP senior scientist. “In our studies, rats and mice received radio frequency radiation across their whole bodies. By contrast, people are mostly exposed in specific local tissues close to where they hold the phone. In addition, the exposure levels and durations in our studies were greater than what people experience.”
The lowest exposure level used in the studies was equal to the maximum local tissue exposure currently allowed for cell phone users. This power level rarely occurs with typical cell phone use. The highest exposure level in the studies was four times higher than the maximum power level permitted.
“We believe that the link between radio frequency radiation and tumors in male rats is real, and the external experts agreed,” said Bucher.
NIH findings in rodents suggest astrocytes play important role in how the brain processes information.
The transmission speed of neurons fluctuates in the brain to achieve an optimal flow of information required for day-to-day activities, according to a National Institutes of Health study. The results, appearing in PNAS, suggest that brain cells called astrocytes alter the transmission speed of neurons by changing the thickness of myelin, an insulation material, and the width of gaps in myelin called nodes of Ranvier, which amplify signals.
“Scientists used to think that myelin could not be thinned except when destroyed in demyelinating diseases, such as multiple sclerosis,” said R. Douglas Fields, Ph.D., senior author and chief of the Section on Nervous System Development and Plasticity at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). “Our study suggests that under normal conditions, the myelin sheath and structure of the nodes of Ranvier are dynamic, even in adults.”
The brain is composed of neurons, which have extensions called axons that can stretch for long distances. Axons are wrapped by layers of myelin, which serve as insulation to increase the speed of signals relayed by neurons. Gaps between segments of myelin are called nodes of Ranvier, and the number and width of these gaps can also regulate transmission speed.
Microbiome-triggered Th17 cells switch from protective to destructive; may be potential treatment targets
An unhealthy population of microbes in the mouth triggers specialized immune cells that inflame and destroy tissues, leading to the type of bone loss associated with a severe form of gum disease, according to a new study in mice and humans. The research, led by scientists from the National Institute of Dental and Craniofacial Research (NIDCR) at the National Institutes of Health and the University of Pennsylvania School of Dental Medicine, Philadelphia, could have implications for new treatment approaches for the condition. The findings appear online Oct. 17, 2018, in Science Translational Medicine.
Periodontal disease is a common disorder that affects nearly half of American adults over age 30, and 70 percent of adults 65 and older. In those affected, bacteria trigger inflammation of the tissues that surround the teeth, which can lead to loss of bone and teeth in an advanced stage of the disease called periodontitis.
“We’ve known for years that microbes stimulate inflammation. Removing bacteria by tooth-brushing and dental care controls inflammation, but not permanently, suggesting there are other factors at play,” said study senior author Niki Moutsopoulos, D.D.S., Ph.D., a clinical investigator at NIDCR. “Our results suggest that immune cells known as T helper 17 cells are drivers of this process, providing the link between oral bacteria and inflammation.”
A novel vaccine designed to protect people from both Lassa fever and rabies showed promise in preclinical testing, according to new research published in Nature Communications. The investigational vaccine, called LASSARAB, was developed and tested by scientists at Thomas Jefferson University in Philadelphia; the University of Minho in Braga, Portugal; the University of California, San Diego; and the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.
The inactivated recombinant vaccine candidate uses a weakened rabies virus vector, or carrier. The research team inserted genetic material from Lassa virus into the rabies virus vector so the vaccine expresses surface proteins from both the Lassa virus and the rabies virus. These surface proteins prompt an immune response against both Lassa and rabies viruses. The recombinant vaccine was then inactivated to “kill” the live rabies virus used to make the carrier.
A new study from National Institutes of Health scientists and their Thai colleagues shows that a “good” bacterium commonly found in probiotic digestive supplements helps eliminate Staphylococcus aureus, a type of bacteria that can cause serious antibiotic-resistant infections. The researchers, led by scientists at NIH’s National Institute of Allergy and Infectious Diseases (NIAID), unexpectedly found that Bacillus bacteria prevented S. aureus bacteria from growing in the gut and nose of healthy individuals. Then, using a mouse study model, they identified exactly how that happens. Researchers from Mahidol University and Rajamangala University of Technology in Thailand collaborated on the project.
“Probiotics frequently are recommended as dietary supplements to improve digestive health,” said NIAID Director Anthony S. Fauci, M.D. “This is one of the first studies to describe precisely how they may work to provide health benefits. The possibility that oral Bacillus might be an effective alternative to antibiotic treatment for some conditions is scientifically intriguing and definitely worthy of further exploration.”
NIH-funded research raises possibility of designer treatments for common form of pain
Ever wonder why things that normally feel gentle, like putting on soft shirts, are painful after a sunburn? In a study of four patients with a rare genetic disorder, IRP researchers found that PIEZO2, a gene previously shown to control our sense of our bodies in space and gentle touch, may also be responsible for tactile allodynia: the skin’s reaction to injury that makes normally gentle touches feel painful. This and a second NIH-funded study, both published in Science Translational Medicine, used mice to show how the gene may play an essential role in the nervous system’s reaction to injury and inflammation, making PIEZO2 a target for developing precise treatments for relieving the pain caused by cuts, burns, and other skin injuries.
“For years scientists have been trying to solve the mystery of how gentle touch becomes painful. These results suggest PIEZO2 is the gene for tactile allodynia. We hope that these results will help researchers develop better treatments for managing this form of pain,” said Alexander T. Chesler, Ph.D., a Stadtman Investigator at the National Center for Complementary and Integrative Health (NCCIH) and a senior author of one of the studies.
The severity of birth defects caused by Zika virus infection may be influenced by natural variations in a pregnant woman’s genes for a key enzyme, according to a study by researchers at the National Institutes of Health, Uniformed Services University of the Health Sciences, Federal University of Rio de Janeiro, and Professor Joaquim Amorim Neto Research Institute in Campina Grande, Brazil. The enzyme, adenylate cyclase, is required to make cyclic adenosine monophosphate (cAMP), which plays a role in placental development and other cellular processes, including the immune response to infection. The findings appear in the Journal of Internal Medicine.
The study enrolled 52 women who had given birth after testing positive for Zika virus infection. Of these women, 28 gave birth to children with reduced head size and other Zika-related birth defects; infants born to the remaining 24 women did not appear to have any Zika-related effects. After sequencing genes from the women, the researchers found that mothers of severely affected infants were more likely to have variations in two genes essential for making adenylate cyclase, ADCY3 and ADCY7.
The variation in ADCY3 has previously been associated with higher levels of adenylate cyclase, leading to higher levels of cAMP. The researchers believe higher cAMP levels could stimulate reproduction of the virus. Similarly, a variation in ADCY7 has been linked to lower levels of cAMP, which could protect against the virus’ effects. The authors note that, because of the relatively small number of women studied, additional research is needed to confirm these results. However, future research on drugs that influence cAMP production might yield potential therapies that protect against Zika exposure during pregnancy.
Findings in rat cell cultures could lead to new method for tracking communications throughout the brain
Neurons absorb and release water when they relay messages throughout the brain, according to a study by researchers at the National Institutes of Health and other institutions. Tracking this water movement with imaging technology may one day provide valuable information on normal brain activity, as well as how injury or disease affect brain function. The study appears in Magnetic Resonance in Medicine.
Current functional magnetic resonance imaging (fMRI) technologies measure neuronal activity indirectly by tracking changes in blood flow and blood oxygen levels. Neurons communicate with each other by a process known as firing. In this process, they emit a slight electrical charge as an enzyme moves positively charged molecules — potassium and sodium ions — through the cell membrane. In the current study, when researchers stimulated cell cultures of rat neurons to fire, they found that the exchanges of potassium and sodium ions was accompanied by an increase in the number of water molecules moving into and out of the cell.
The researchers noted that their method works only in cultures of neurons and additional studies are necessary to advance the technology so that it can be used to monitor neuronal firing in living organisms.