cholesterol

An Unlikely Target in the Fight Against Alzheimer’s

IRP Researchers Find Link Between Dementia and Byproducts of Cholesterol Breakdown

old man in nursing home

When most people think about Alzheimer’s disease, the liver is probably the organ least likely to come to mind. Yet recent IRP research suggests that molecules called bile acids, which are synthesized in the liver, may influence the development of Alzheimer’s disease. In honor of Brain Awareness Week this week, we’re diving into that work to learn how such an unlikely target could help lead to new treatments for Alzheimer’s and other forms of dementia.

To date, efforts to develop therapies for Alzheimer’s disease, which affects more than 6 million Americans over the age of 65, have achieved little success. Many scientists are focused on proteins in the brain as potential treatment targets, including the ‘amyloid-beta’ protein now infamous amongst Alzheimer’s researchers. In contrast, IRP senior investigator Madhav Thambisetty, M.D., Ph.D., has been exploring the role that cholesterol might play in the development of Alzheimer’s and vascular dementia, which is marked by microscopic bleeding and blood vessel blockage and is the second most common form of dementia.

Designer Drug Uses Double Whammy to Fight Heart Disease

Custom-Built Molecule May Improve On Its Natural Counterpart

plaque buildup in an artery

Ten years ago, a young woman from Chicago came to the National Institutes of Health with a rare genetic condition. A mutation in her DNA was making her metabolic system malfunction, causing levels of fat molecules called triglycerides in her blood to skyrocket far out of the normal range. This triggered inflammation in her pancreas, a painful and potentially life-threatening condition known as pancreatitis. She couldn’t understand why there wasn’t any kind of treatment to help her.

IRP senior investigator Alan T. Remaley, M.D., Ph.D., took on the challenge with the help of Anna Wolska, Ph.D., a research fellow in his lab. Dr. Remaley leads the Lipoprotein Metabolism Section in the National Heart, Lung, and Blood Institute (NHLBI), where he and Dr. Wolska study lipoproteins, small particles that transport fats such as cholesterol and triglycerides through the bloodstream to be broken down and used by cells for energy. Their efforts to help that young woman ultimately led to the discovery — published last January — of a new strategy for reducing triglycerides in order to treat serious ailments like pancreatitis and heart disease.

Innovation Awards Spark New Intramural Collaborations

Program Boosts Initiatives Supporting Researchers Across NIH

scientists talking in a lab

From Superbowl-winning football teams to comic book cohorts like The Avengers, combining the efforts of multiple talented individuals is a proven strategy for achieving remarkable results. It may come as no surprise, then, that the NIH’s Intramural Research Program (IRP) strongly encourages collaborations that breach the boundaries of its 24 Institutes and Centers. One example of these efforts is the Director’s Challenge Innovation Awards Program, which since 2009 has funded high-impact scientific projects that bring together researchers from across the IRP.

Cholesterol Molecule Yields Insights Into Distressed Lungs

Potential biomarker may contribute to personalized treatments

diagram of fluid buildup in the lungs' air sacs

Until recently, medical treatment has largely been one-size-fits-all, with doctors unable to separate patients into distinct groups that might benefit more or less from a particular approach. However, researchers are increasingly finding that individuals with the same disease can differ markedly in ways that might one day influence their care. A recent IRP study has identified a particular molecule that may have just such an impact for patients with damaged lungs.