Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Too Much of a Good Thing
      • Turning Face Perception on Its Head
      • Safeguarding a Second Chance at Life
      • A Biological Betrayal
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
        • Earl Stadtman Investigator Frequently Asked Questions
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
The NIH Catalyst: A Publication About NIH Intramural Research

National Institutes of Health • Office of the Director | Volume 19 Issue 6 • November–December 2011

New Methods

Laser Capture Micro-Dissection Gets Automated

By Christopher Wanjek

Michael A. Tangrea, NCI

NIH researchers use three different types of laser-capture microdissection (LCM) technologies to dissect tissue such as the human prostate gland shown here. From top, the traditional LCM and the more automated systems—spatially invariant vector quantization (SIVQ)–LCM and expression microdissection (xMD).

You’d think it would be hard to top laser-capture microdissection, or LCM. This technique, developed at the NIH in the 1990s, uses lasers and other specialized instruments to carve out sections of tissue as small as a few cells from across a complex specimen and then lift them away almost magically, undamaged, for further analysis.

For the operator, it’s like playing a video game, zapping and lifting with trigger buttons, guided by microscopic visualization.

LCM instruments are in pathology labs across the globe and have generated close to 3,000 scientific publications and hundreds of millions of dollars in sales, licensed through Arcturus Engineering/Life Technologies and other companies. The inventors include NCI’s Michael Emmert-Buck, NICHD physicist Robert Bonner, CIT engineer Tom Pohida, and Lance Liotta, former deputy director for intramural research.

But manual laser slicing is so old school. Now, NIHers are further automating the process, developing parallel technologies that employ immunohistochemistry and image-analysis software to make the microdissection process nearly operator-independent.

Their goal, said Emmert-Buck, is to bring laser dissection to the clinic to help precipitate the era of personalized medicine. The new techniques are ideal for studies requiring large amounts of material, such as proteomics and genomic assays. For example, to understand how a drug will interact with a specific patient’s tumor, one often needs thousands of precisely dissected cells. Automated methods can dissect cells much faster than the manual-based traditional LCM.

“They are trying to replace me,” laments Jaime Rodriguez-Canales, a molecular pathologist in the NCI Laboratory of Pathology’s LCM Core, which has assisted with dissections for countless NIH labs over the past decade.

Although sounding like a modern-day John Henry—the American folk hero who proved he could hammer rocks faster than a steam-powered hammer—Rodriguez-Canales is being facetious. Yes, it is true that his steam-hammer-wielding colleague, biomedical engineer Jeffrey Hanson, was slicing out dozens of cancer cells. But expert molecular pathologists will be needed more than ever to prep specimens for dissection and then discern the meaning of the data that comes out.

One new dissection method is expression microdissection (xMD), which uses a targeting probe for cell procurement in place of the operator-based, cell-by-cell LCM selection process. This technology recently was adapted for commercially available LCMs, enabling investigators outside of the NIH to use it. The xMD method might allow subcellular dissections, a notable advance for the field.

The other new method is spatially invariant vector quantization (SIVQ)-LCM, an image-based dissection technology developed by the NIHers and University of Michigan School of Medicine (Ann Arbor, Mich.). SIVQ uses mathematical modeling and image processing to locate phenotypically similar cells across entire tissue sections.

The complementary LCM, xMD, and SIVQ-LCM technologies can be applied widely in research and clinical settings. For example, a pathologist analyzing a patient biopsy to provide a standard histopathological diagnosis can select a molecular target panel to be studied using the optimal technique—SIVQ–LCM, xMD, or standard LCM—for harvesting cells.

The pathologist then can provide information to clinicians on clinical diagnosis and status of biological markers, useful for determining patient prognosis and selecting the most efficacious treatment. The NIH Clinical Center is evaluating such a workflow.

The NIH intramural program is an ideal incubator for these technologies because of the confluence of clinicians, engineers, pathologists, and molecular biologists, said Emmert-Buck. Although both xMD and SIVQ–LCM are still in the early commercialization stage, he welcomes NIH collaborators to beta-test the new methods.

As for the good-natured joking about John Henry, Emmert-Buck reassured Rodriguez-Canales: “A good pathologist with a good tool is just going to be better,” he said. “The history of science shows that new technologies lead to new discoveries that benefit everyone.”

This page was last updated on Monday, May 2, 2022

  • Issue Overview
  • Features
    • A Lasker Award for CC Workers
    • Systems Biology as Defined by NIH
    • NIAMS Celebrates Turning 25
    • Medical Research Scholars Program
    • Medical Residents Visit NIH
    • Mapping Translocations
    • NIH Welcomes Google Scholars
  • Departments
    • From the Deputy Director for Intramural Research
    • News You Can Use
    • The Training Page
    • New Methods
    • Research Briefs
    • Colleagues: Recently Tenured
    • Announcements
    • Laboratory Confessions
  • Issue Contents
  • Download this issue as a PDF

Catalyst menu

  • Current Issue
  • Previous Issues
  • About The NIH Catalyst
  • Contact The NIH Catalyst
  • Share Your Story
  • NIH Abbreviations

Catalyst links

  • Follow The NIH Catalyst

Subscribe Today!

Subscribe to The NIH Catalyst Newsletter and receive email updates.

Subscribe

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search