Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Too Much of a Good Thing
      • Turning Face Perception on Its Head
      • Safeguarding a Second Chance at Life
      • A Biological Betrayal
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
        • Earl Stadtman Investigator Frequently Asked Questions
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
The NIH Catalyst: A Publication About NIH Intramural Research

National Institutes of Health • Office of the Director | Volume 19 Issue 6 • November–December 2011

Mapping Translocations

New Technique Identifies First Events in Tumor Development

NIAMS AND NCI RESEARCH NEWS

NIGMS

The long, stringy DNA that makes up genes is spooled within chromosomes inside the nucleus of a cell. (Note that a gene would actually be a much longer stretch of DNA than what is shown here.)

NHGRI

Translocations occur when a broken strand of DNA from one chromosome is erroneously joined with that of another chromosome. Translocations can result in tumors.

A novel technique that enables scientists to measure and document tumor-inducing changes in DNA is providing new insights into the earliest events involved in the formation of leukemias, lymphomas, and sarcomas and could potentially lead to the discovery of ways to stop those events.

A team of researchers at NIAMS, NCI, and Rockefeller University (New York) developed a high-throughput technique—called translocation capture sequencing (TC-Seq)—to document chromosomal rearrangements, or translocations, in primary cells. They reported their findings recently in the journal Cell (Cell DOI 10.1016/j.cell.2011.07.048).

Translocations occur when a broken strand of DNA from one chromosome is erroneously joined with that of another. Such irregularities can be beneficial—they may enable the immune system to respond to a vast number of microorganisms and viruses—but they can result in tumors. Translocations can take place during the course of normal cell division when each chromosome is copied verbatim to provide genetic information for the daughter cells.

“The cell expresses specific enzymes whose primary purpose is to repair such lesions effectively, but when the enzymes mistakenly join pieces of two different chromosomes, the cell’s genetic information is changed,” said Rafael Casellas, senior investigator in the NIAMS’s Genomics and Immunity Section.

Casellas likens the phenomenon to breaking two sentences and then rejoining them incorrectly. For example, “The boy completed his homework” and “The dog went to the vet” might become “The dog completed his homework” and “The boy went to the vet.” When a cell gets nonsensical information such as this, it can become deregulated and even malignant.

Scientists have known since the 1960s that recurrent translocations play a critical role in cancer. What was unclear was how these genetic abnormalities are created, since very few of them were studied, and only within the context of tumors, said Casellas. To better understand the nature of these tumor-inducing rearrangements, the authors created a system to visualize their appearance in normal, nontransformed cells.

Using the TC-Seq system they created, the scientists investigated how oncogenic rearrangements occur. First, they introduced enzymes that recognize and cause damage at a particular sequence in the DNA into cells from mice, thereby constructing a genome in which a unique site is broken continuously.

Next, they used polymerase chain reaction—a technique to quickly amplify short sequences of DNA—to check all of the sites in the genome that would get translocated to this particular break. The researchers examined more than 180,000 chromosomal rearrangements from 400 million B cells.

Based on this large data set, the scientists made several important observations about the translocation process. They learned that most of the translocations involve gene domains rather than the space on the DNA between the genes.

They also found that most translocations target active genes, with a clear bias for the beginning of the gene, as opposed to its middle or end. The team also showed that a particular enzyme that normally creates DNA breaks in B cells dramatically increases the incidence of translocations during the immune response.

This feature explains the long-standing observation that more than 95 percent of human lymphomas and leukemias are of B-cell origin.

This molecular understanding of translocation hot spots “is allowing us to understand how tumors are initiated,” said Casellas. “It is the kind of information that in the near future, might help us prevent the development of cancer.”

This page was last updated on Monday, May 2, 2022

  • Issue Overview
  • Features
    • A Lasker Award for CC Workers
    • Systems Biology as Defined by NIH
    • NIAMS Celebrates Turning 25
    • Medical Research Scholars Program
    • Medical Residents Visit NIH
    • Mapping Translocations
    • NIH Welcomes Google Scholars
  • Departments
    • From the Deputy Director for Intramural Research
    • News You Can Use
    • The Training Page
    • New Methods
    • Research Briefs
    • Colleagues: Recently Tenured
    • Announcements
    • Laboratory Confessions
  • Issue Contents
  • Download this issue as a PDF

Catalyst menu

  • Current Issue
  • Previous Issues
  • About The NIH Catalyst
  • Contact The NIH Catalyst
  • Share Your Story
  • NIH Abbreviations

Catalyst links

  • Follow The NIH Catalyst

Subscribe Today!

Subscribe to The NIH Catalyst Newsletter and receive email updates.

Subscribe

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search