Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
I am Intramural Blog

Brandon Levy

Brandon Levy is a Health Communications Specialist for the NIH’s Intramural Research Program, where he works to increase the IRP’s public profile and ensure IRP scientists get the recognition they deserve. He particularly enjoys writing about the cutting-edge research performed at NIH but also produces videos and content for social media. Before joining the IRP, he worked as a science writer in NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and as a postbaccalaureate Intramural Research Training Award (IRTA) fellow in NIH’s National Institute of Mental Health (NIMH), spending his days putting people inside giant magnets and sending magnetic waves into their brains to shed light on the mysteries of learning and memory. When he’s not hunched over a computer keyboard, Brandon enjoys singing in his acapella group, reading, honing his skills as an amateur chef, and over-obsessing about college basketball.


Posts By This Author

HIV Uses Host's Own Immune Molecules for Protection

Tuesday, February 27, 2018

an HIV-infected T cell

In one of Aesop’s classic fables, a clever wolf dons a sheep’s skin in order to move through the herd undetected. As it turns out, IRP researchers have discovered that in people with a specific set of immune system genes, the HIV virus uses a similar approach to hide from the body’s defenses.1

Nearly all cells in our bodies are coated with proteins called human leukocyte antigens (HLAs). These proteins allow the immune system to distinguish between healthy, native cells and those contaminated by unwelcome visitors like viruses or bacteria that must be destroyed. Each of the various HLA proteins is encoded by a different HLA gene and these genes vary considerably between individuals, causing different people to have different variants of each HLA protein.

“There are thousands of different forms of these HLA genes, and that variation allows us, as a species, to deal with virtually all infectious pathogens,” says IRP Senior Investigator Mary N. Carrington, Ph.D., the senior author of the new paper. “We’re really interested in the diversity of that part of the genome, since the risk of essentially every autoimmune disease, many cancers, and probably every infectious disease is associated with this set of genes.”

Twitter Chat Shines Spotlight on Rare Diseases

Tuesday, February 27, 2018

Between 25 and 30 million Americans have a rare disease, defined as a condition affecting fewer than 200,000 people. On March 1, the NIH will host its annual Rare Disease Day to increase awareness of these under-recognized and often undiagnosed illnesses and highlight the efforts of scientists, patients, and advocates to produce treatments.

In anticipation of the occasion, on February 23, NIH organized a Twitter chat with NIH Director Francis Collins, M.D., Ph.D., and Sharon Terry, President and CEO of Genetic Alliance and a member of the Research Program Advisory Panel for NIH’s All of US project. Check out some of the more noteworthy exchanges below or look at the full Twitter chat by searching for #NIHchat on Twitter.

NIH Rare Disease Day logo

Labradors, Terriers, and Boxers — Oh My! IRP Researchers Delve Into Doggy DNA

Monday, February 26, 2018

two breeds of dog that have massively differing physical traits

For over a decade, my family shared our home with a short, fat beagle named Kayla Sue. She had big floppy ears, a tail as straight as an exclamation point, and a coat of fur that was a patchwork of white, brown, and black splotches. Her love of chasing small animals was matched only by her enthusiasm for eating, napping, and belly rubs. One of my best friends growing up, on the other hand, had a mean-spirited Dachshund named Rocky who would not let anyone outside his family touch his long, brown, sausage-shaped body. Meanwhile, one of my brother’s close childhood friends had two humongous, overly-friendly, black-and-brown German shepherds that would immediately bowl you over when you walked through the front door.

It doesn’t take a particularly sharp observer to notice that, despite being the same species, the more than 300 breeds of dog have remarkably different physical and behavioral traits. But what remains less clear even today are the specific biological roots that produce these widely varying attributes. And, perhaps more importantly, scientists seek to understand how learning about that immense diversity might help us improve the health of our canine companions – and ourselves.

Gut Bugs May Convert High-Fat Fare into Cancer Risk

Tuesday, February 13, 2018

cartoon image of the gut microbiome showing microbes in the digestive tract

Researchers have a long history of fattening up mice to gain insight into the causes and consequences of weight gain in the human body. In one of the more recent studies of this kind, a team of IRP researchers found that that a high-fat diet consistently altered the collection of microbes residing in mice’s digestive tracts and that this diet-microbe combination might pre-dispose the mice – and, potentially, obese humans – to colon cancer by triggering certain changes in how genes behave.

A Quarter-Century of Advocating for NIH Women Scientists

Sunday, February 11, 2018

On December 22, 2015, the United Nations General Assembly adopted a resolution proclaiming February 11 of each year as the International Day of Women and Girls in Science, with the goal of highlighting the important contributions of women to the fields of science, technology, engineering, and mathematics. Here at NIH, a dedicated group of scientists known as the Women Scientist Advisors (WSA) is working not only to recognize the role of women in the biomedical sciences but to expand it as well.

female scientist looking into a microscope

Framingham at 70: Celebrating a Landmark Heart Study

Friday, February 9, 2018

Framingham Heart Study logo

At the start of his third term in 1941, President Franklin Delano Roosevelt’s blood pressure was an alarmingly high 188/105—or, more accurately, alarming by today’s standards. But back then, nobody knew that high blood pressure was related in any way to cardiovascular disease (CVD). As a result, the nation was completely blind-sided when Roosevelt died of a stroke four years later.

The link between hypertension and CVD is now common knowledge due to a research program launched in 1948 called the Framingham Heart Study, now in its 70th year. To kick off American Heart Month this February, the Framingham Study’s current director, IRP Senior Investigator Daniel Levy, M.D., gave a lecture on February 1, titled “Unraveling the Mysteries of Cardiovascular Disease: Lessons from NHLBI’s Framingham Heart Study.”

Summertime Brains: Joanne Compo

Wednesday, January 17, 2018

Joanne Compo, a sophomore at the University of Washington in Seattle, Washington, spent the summer of 2017 working in the lab of NIH IRP Distinguished Investigator Dr. Kenneth Fischbeck. She helped create a quality of life questionnaire for patients with Kennedy’s disease, a neuromuscular disorder that causes muscles to weaken over time due to the death of motor neurons responsible for movement. Such a questionnaire could help affected individuals get diagnosed more quickly and shed light on which interventions improve their lives the most.

Summertime Brains: Jason Mazique

Tuesday, December 12, 2017

Jason Mazique, who is currently a freshman at Williams College in Williamstown, Massachusetts, spent his 2017 summer working in the lab of NIH IRP Senior Investigator Dr. Harish Pant. During his time at the NIH, Mazique investigated how a particular protein affects neurons in the brain, with implications for neurological conditions like ALS and Alzheimer’s disease

Summertime Brains: Francia Fang

Tuesday, November 14, 2017

Francia Fang, who is currently a junior at Duke University, spent her 2017 summer working in the lab of NIH IRP Senior Investigator Dr. Zhengping Zhuang. During her time at the NIH, Fang investigated how genes influence the development of brain tumors and also shadowed doctors as they met with brain cancer patients.

The video above, featuring Fang, is the first in a series of profiles highlighting IRP summer interns who worked in NIH National Institute of Neurological Disorders and Stroke (NINDS) intramural labs this past summer.

  • First page« First
  • Previous page‹ Previous
  • …
  • Page 1414
  • Page 1515
  • Page 1616
  • Page 1717
  • Page 1818
  • Page 1919
  • Page 2020
  • Page 2121
  • Current page22

This page was last updated on Wednesday, March 15, 2023

Blog menu

  • Contributing Authors
    • Anindita Ray
    • Brandon Levy
    • Devon Valera
    • Melissa Glim
  • Categories
    • IRP Discoveries
    • Profiles
    • Events
    • NIH History
    • IRP Life

Blog links

  • Subscribe to RSS feed

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search