In the News

Research advances from the National Institutes of Health (NIH) Intramural Research Program (IRP) often make headlines. Read the news releases that describe our most recent findings:

Featured Article

Yes, Cooking Can Help Improve Your Mental Health — Here’s What Health Professionals Have to Say About It

Food & Wine
November 7, 2024

The act of cooking offers the chance to unwind and create something special, whether you’re planning to feed a crowd or just yourself. And while you may have noticed feeling good after whipping up that perfect pie or braise, there’s actually a lot of scientific data to suggest that cooking can have a positive impact on mental health. 

One meta-analysis (a report of pre-existing research) from the National Institutes of Health looked at 11 studies and found that “cooking interventions” — encouraging people to follow certain recipes or giving people cooking classes — can improve a person’s mental well-being. It specifically found that people who participated in cooking interventions reported having better self-esteem and quality of life, as well as a more positive emotional state after the fact. Another study even discovered that baking can help raise a person’s confidence level. 

DNA-editing method shows promise to treat mouse model of progeria

Using a recently developed DNA base-editing technique, researchers correct accelerating aging disorder

Researchers have successfully used a DNA-editing technique to extend the lifespan of mice with the genetic variation associated with progeria, a rare genetic disease that causes extreme premature aging in children and can significantly shorten their life expectancy. The study was published in the journal Nature, and was a collaboration between the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health; Broad Institute of Harvard and MIT, Boston; and the Vanderbilt University Medical Center, Nashville, Tennessee.

DNA is made up of four chemical bases — A, C, G and T. Progeria, which is also known as Hutchinson-Gilford progeria syndrome, is caused by a mutation in the nuclear lamin A (LMNA) gene in which one DNA base C is changed to a T. This change increases the production of the toxic protein progerin, which causes the rapid aging process.

Approximately 1 in 4 million children are diagnosed with progeria within the first two years of birth, and virtually all of these children develop health issues in childhood and adolescence that are normally associated with old age, including cardiovascular disease (heart attacks and strokes), hair loss, skeletal problems, subcutaneous fat loss and hardened skin.

IRP study uncovers blood vessel damage and inflammation in COVID-19 patients’ brains but no infection

Results from a study of 19 deceased patients suggests brain damage is a byproduct of a patient’s illness

In an in-depth study of how COVID-19 affects a patient’s brain, National Institutes of Health researchers consistently spotted hallmarks of damage caused by thinning and leaky brain blood vessels in tissue samples from patients who died shortly after contracting the disease. In addition, they saw no signs of SARS-CoV-2 in the tissue samples, suggesting the damage was not caused by a direct viral attack on the brain. The results were published as a correspondence in the New England Journal of Medicine.

“We found that the brains of patients who contract infection from SARS-CoV-2 may be susceptible to microvascular blood vessel damage. Our results suggest that this may be caused by the body’s inflammatory response to the virus” said Avindra Nath, M.D., clinical director at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and the senior author of the study. “We hope these results will help doctors understand the full spectrum of problems patients may suffer so that we can come up with better treatments.”

Although COVID-19 is primarily a respiratory disease, patients often experience neurological problems including headaches, delirium, cognitive dysfunction, dizziness, fatigue, and loss of the sense of smell. The disease may also cause patients to suffer strokes and other neuropathologies.

brain image with arrows pointing to light and dark spots that are indicative of blood vessel damage

NIH researchers consistently found blood vessel damage in the brains of COVID-19 patients but no signs of SARS-CoV-2 infections. Arrows point to light and dark spots that are indicative of blood vessel damage observed in the study.

Study links metabolic syndrome to higher cardiovascular risk in patients with psoriasis

Psoriasis, a chronic inflammatory skin disease, has long been known to increase the risk of cardiovascular disease, which includes heart attack and stroke. Now, researchers have identified a key culprit: the presence of metabolic syndrome (MetSyn), a condition that includes obesity, diabetes, high cholesterol, and hypertension, and is highly prevalent among psoriasis patients.

The findings, which could lead to new ways to help prevent cardiovascular disease among people with psoriasis, appear online today in the Journal of the American Association of Dermatology (JAAD). The study was funded by the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health.

“Metabolic syndrome, so common among our psoriasis patients, drives up coronary artery disease in this population by increasing the plaque buildup that clogs the heart’s arteries,” said Nehal N. Mehta, M.D., MSCE, preventive cardiologist and head of the NHLBI’s Lab of Inflammation and Cardiometabolic Diseases. “Our study shows that, of the MetSyn components, hypertension and obesity contribute the most to coronary plaque buildup, and hence can be good targets for intervention.”

IRP neuroscientists isolate promising mini antibodies against COVID-19 from a llama

Preliminary results suggest anti-COVID19 nanobodies may be effective at preventing and diagnosing infections

National Institutes of Health researchers have isolated a set of promising, tiny antibodies, or “nanobodies,” against SARS-CoV-2 that were produced by a llama named Cormac. Preliminary results published in Scientific Reports suggest that at least one of these nanobodies, called NIH-CoVnb-112, could prevent infections and detect virus particles by grabbing hold of SARS-CoV-2 spike proteins. In addition, the nanobody appeared to work equally well in either liquid or aerosol form, suggesting it could remain effective after inhalation. SARS-CoV-2 is the virus that causes COVID-19.

The study was led by a pair of neuroscientists, Thomas J. “T.J.” Esparza, B.S., and David L. Brody, M.D., Ph.D., who work in a brain imaging lab at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS).

“For years TJ and I had been testing out how to use nanobodies to improve brain imaging. When the pandemic broke, we thought this was a once in a lifetime, all-hands-on-deck situation and joined the fight,” said Dr. Brody, who is also a professor at Uniformed Services University for the Health Sciences and the senior author of the study. “We hope that these anti-COVID-19 nanobodies may be highly effective and versatile in combating the coronavirus pandemic.”

llama

Scientists isolated nanobodies against COVID-19 from a llama named Cormac.
Image credit: Triple J Farms, Bellingham, Washington

Reston Ebolavirus spreads efficiently in pigs

Reston ebolavirus (RESTV) should be considered a livestock pathogen with potential to affect other mammals, including people, according to National Institutes of Health scientists. The caution comes from a study published in Proceedings of the National Academy of Sciences in which the scientists found that experimental piglets infected with RESTV developed severe respiratory disease and shed the virus from the upper respiratory tract. RESTV can infect humans but is not known to cause disease. Now the scientists express concern that pigs could serve as an “interim or amplifying host for ebolaviruses.”

“The emergence of RESTV in pigs is a wake-up call as transmission into humans through direct contact with pigs or the food chain is a possibility,” they state in their study report. Scientists from NIH’s National Institute of Allergy and Infectious Diseases (NIAID) conducted the work at Rocky Mountain Laboratories in Hamilton, Montana.

Scientists first identified RESTV in 1989 in research monkeys shipped from the Philippines to Reston, Virginia. The virus also gained attention in 2008 when an outbreak swept through pigs in the Philippines. That outbreak led to the first association of pig-to-human RESTV transmission, prompting the World Health Organization to issue a global alert in February 2009. RESTV sequences also have been identified in pigs in China, and the scientists suggest officials monitor pigs for disease throughout the Philippines and Southeast Asia.

colorized transmission electron micrograph shows a slice of Reston virus particles (blue) in the lung of an infected pig

This colorized transmission electron micrograph shows a slice of Reston virus particles (blue) in the lung of an infected pig.

IRP researchers discover brain area crucial for recognizing visual events

Researchers at the National Eye Institute (NEI) report that a brain region in the superior temporal sulcus (fSTS) is crucial for processing and making decisions about visual information. The findings, which could provide clues to treating visual conditions from stroke, appear today in the journal Neuron. NEI is part of the National Institutes of Health.

“The human visual system recognizes, prioritizes, and categorizes visual objects and events to provide actionable information,” said Richard Krauzlis, Ph.D., chief of the NEI Section on Eye Movements and Selective Attention and senior author of the study. “We were surprised to learn that the fSTS is a crucial link in this story-building process, passing information from an evolutionarily ancient region in the midbrain to highly specialized regions of the visual cortex.”

While aspects of visual processing begin in the eye, crucial steps in visual attention start in the superior colliculus, a part of the midbrain that handles a variety of sensory input. Previous work in Krauzlis’ lab showed that neuronal activity in the superior colliculus is necessary for the brain to notice an event in the visual field and decide that it is significant.

fMRI scan showing activity changes in the brain's superior temporal sulcus

fMRI scans reveal activity changes in the fSTS.

IRP researchers link cases of ALS and FTD to a mutation associated with Huntington’s disease

Previously unknown genetic connection could be a target for gene therapy

A study led by researchers at the National Institutes of Health has made a surprising connection between frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two disorders of the nervous system, and the genetic mutation normally understood to cause Huntington’s disease.

This large, international project, which included a collaboration between the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute on Aging (NIA), opens a potentially new avenue for diagnosing and treating some individuals with FTD or ALS.

Several neurological disorders have been linked to “repeat expansions,” a type of mutation that results in abnormal repetition of certain DNA building blocks. For example, Huntington’s disease occurs when a sequence of three DNA building blocks that make up the gene for a protein called huntingtin repeats many more times than normal. These repeats can be used to predict whether someone will develop the illness and even when their symptoms are likely to appear, because the more repeats in the gene, the earlier the onset of disease.

“It has been recognized for some time that repeat expansion mutations can give rise to neurological disorders,” said Sonja Scholz, M.D., Ph.D., investigator, NINDS Intramural Research Program. “But screening for these mutations throughout the entire genome has traditionally been cost-prohibitive and technically challenging.”

Commonly used antibiotic shows promise for combating Zika infections

NIH preclinical study suggests FDA-approved tetracycline-based antibiotics may slow infection and reduce neurological problems

In 2015, hundreds of children were born with brain deformities resulting from a global outbreak of Zika virus infections. Recently, National Institutes of Health researchers used a variety of advanced drug screening techniques to test out more than 10,000 compounds in search of a cure. To their surprise, they found that the widely used antibiotic methacycline was effective at preventing brain infections and reducing neurological problems associated with the virus in mice. In addition, they found that drugs originally designed to combat Alzheimer’s disease and inflammation may also help fight infections.

“Around the world, the Zika outbreak produced devastating, long-term neurological problems for many children and their families. Although the infections are down, the threat remains,” said Avindra Nath, M.D., senior investigator at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and a senior author of the study published in PNAS. “We hope these promising results are a good first step to preparing the world for combating the next potential outbreak.”

The study was a collaboration between scientists on Dr. Nath’s team and researchers in laboratories led by Anton Simeonov, Ph.D., scientific director at the NIH’s National Center for Advancing Translational Sciences (NCATS) and Radhakrishnan Padmanabhan, Ph.D., Professor of Microbiology & Immunology, Georgetown University Medical Center, Washington, D.C.

cells in a Zika-infected mouse brain

NIH scientists found that the commonly used antibiotic methacycline may be effective at combating the neurological problems caused by Zika virus infections. This is a picture of a Zika-infected mouse brain from the study. Image credit: Nath lab, NIH/NINDS

Study of “exceptional responders” yields clues to cancer and potential treatments

In a comprehensive analysis of patients with cancer who had exceptional responses to therapy, researchers have identified molecular changes in the patients’ tumors that may explain some of the exceptional responses. The results demonstrate that genomic characterizations of cancer can uncover genetic alterations that may contribute to unexpected and long-lasting responses to treatment, according to the researchers.

The results appeared in Cancer Cell on Nov. 19. Researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, conducted the study in collaboration with investigators from other institutions, including NCI-designated Cancer Centers.

“The majority of patients in this study had metastatic cancers that are typically difficult to treat, yet some of the patient responses lasted for many years,” said Louis Staudt, M.D., Ph.D., director of NCI’s Center for Cancer Genomics, who co-led the study. “Researchers and the doctors who treat these patients have long been curious about the mechanisms underlying these rare responses to treatment. Using modern genomic tools, we can now start to solve these fascinating puzzles.”

crowd of people in the shape of a DNA double helix

A genomic study has uncovered molecular changes in patient tumors that may give rise to dramatic and long-lasting responses to cancer therapy.

Envision color: Activity patterns in the brain are specific to the color you see

NIH research findings reveal new aspects of visual processing

Researchers at the National Eye Institute (NEI) have decoded brain maps of human color perception. The findings, published today in Current Biology, open a window into how color processing is organized in the brain, and how the brain recognizes and groups colors in the environment. The study may have implications for the development of machine-brain interfaces for visual prosthetics. NEI is part of the National Institutes of Health.

“This is one of the first studies to determine what color a person is seeing based on direct measurements of brain activity,” said Bevil Conway, Ph.D., chief of NEI’s Unit on Sensation, Cognition and Action, who led the study. “The approach lets us get at fundamental questions of how we perceive, categorize, and understand color.”

The brain uses light signals detected by the retina’s cone photoreceptors as the building blocks for color perception. Three types of cone photoreceptors detect light over a range of wavelengths. The brain mixes and categorizes these signals to perceive color in a process that is not well understood.

Colored stimuli in yellow (top) and blue (bottom). Light luminance level versions are on the left; dark versions on the right.

Colored stimuli in yellow (top) and blue (bottom). Light luminance level versions are on the left; dark versions on the right. Volunteers used a variety of names for the upper stimuli, such as “yellow” for the left and “brown” for the right, but consistently used “blue” for both the lower stimuli.

Continue Exploring the IRP

This page was last updated on Thursday, December 26, 2024