Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
The NIH Catalyst: A Publication About NIH Intramural Research

National Institutes of Health • Office of the Director | Volume 28 Issue 1 • January–February 2020

NEI: Using Artificial Intelligence for Quality Control of Stem Cell–Derived Tissues

Technique key to scaling up manufacture of therapies from induced pluripotent stem cells

BY KATHRYN DEMOTT, NEI

Researchers from the National Eye Institute (NEI) and the National Institute of Standards and Technology (NIST) have used artificial intelligence (AI) to evaluate stem cell–derived “patches” of retinal pigment epithelium (RPE) tissue for implanting into the eyes of patients with age-related macular degeneration (AMD), a leading cause of blindness.

The proof-of-principle study helps pave the way for AI-based quality control of therapeutic cells and tissues. The method was developed by researchers at NEI and NIST and is described in a report published online November 12, 2019, in the Journal of Clinical Investigation.

Blue and gray fibers magnified

CREDIT: NATHAN HOTALING, NCATS

Scanning electron micrograph showing induced pluripotent stem cell–derived retinal pigment epithelium tissue (gray) cultured on a fiber-based scaffold (blue).

“This AI-based method of validating stem cell–derived tissues is a significant improvement over conventional assays, which are low-yield [and] expensive and require a trained user,” said Kapil Bharti, a senior investigator in NEI’s Ocular and Stem Cell Translational Research Section.

“Our approach will help scale up manufacturing and will speed delivery of tissues to the clinic,” added Bharti, who led the research along with Carl Simon Jr. and Peter Bajcsy of NIST.

Cells of the RPE nourish the light-sensing photoreceptors in the eye and are among the first to die from geographic atrophy, commonly known as “dry” AMD. Photoreceptors die without the RPE, resulting in vision loss and blindness.

Bharti’s team is working on a technique for making RPE replacement patches from AMD patients’ own cells. Patient blood cells are coaxed in the lab to become induced pluripotent stem cells (iPSCs), which can become any type of cell in the body. The iPSCs are then seeded onto a biodegradable scaffold where they are induced to differentiate into mature RPE. The scaffold-RPE “patch” is implanted in the back of the eye, behind the retina, to rescue photoreceptors and preserve vision.

The patch worked in an animal model, and a clinical trial is planned.

The researchers’ AI-based validation method used deep neural networks, an AI technique that performs mathematical computations aimed at detecting patterns in unlabeled and unstructured data. The algorithm operated on images of the RPE obtained using quantitative bright-field absorbance microscopy. The networks were trained to identify visual indications of RPE maturation that correlated with positive RPE function.

Those single-cell visual characteristics were then fed into traditional machine-learning algorithms, which in turn helped the computers learn to detect discrete cell features crucial to the prediction of RPE tissue function.

The method was validated using stem cell–derived RPE from a healthy donor. Its effectiveness was then tested by comparing iPSC-RPE derived from healthy donors with iPSC-RPE from donors with oculocutaneous albinism disorder and with clinical-grade stem cell–derived RPE from donors with AMD.

In particular, the AI-based image-analysis method accurately detected known markers of RPE maturity and function: transepithelial resistance, a measure of the junctions between neighboring RPE; and secretion of endothelial growth factors. The method also can match a particular iPSC-RPE tissue sample to other samples from the same donor, which helps confirm the identity of tissues during clinical-grade manufacturing.

“Multiple AI methods and advanced hardware allowed us to analyze terabytes and terabytes of imaging data for each individual patient and do it more accurately and much faster than in the past,” Bajcsy said.

“This work demonstrates how a garden-variety microscope, if used carefully, can make a precise, reproducible measurement of tissue quality,” Simon said.


The work was supported by the NEI Intramural Research Program and the Common Fund Therapeutics Challenge Award. The flow-cytometry core, led by the National Heart, Lung and Blood Institute, also contributed to the research. (NIH authors: N.A. Hotalin, Q. Wan, R. Sharma, A. George, and K. Bharti, J Clin Invest, 2019; DOI:10.1172/JCI131187)

This page was last updated on Tuesday, March 29, 2022

  • Issue Overview
  • Features
    • Pushing the Frontiers of Imaging
    • Getting to Know 11 Stadtmans
    • Recognizing 35 Years of Progress in Sjögren Syndrome Research
    • NEI: Using Artificial Intelligence for Quality Control of Stem Cell–Derived Tissues
    • Obituaries 2019
  • Departments
    • From the Deputy Director for Intramural Research
    • From the Annals of NIH History
    • News You Can Use
    • Research Briefs
    • The Training Page: From the Fellows Committee
    • The SIG Beat: Artificial Intelligence
    • The SIG Beat
    • Scientific Moment
    • Announcements
  • Issue Contents
  • Download this issue as a PDF

Catalyst menu

  • Current Issue
  • Previous Issues
  • About The NIH Catalyst
  • Contact The NIH Catalyst
  • Share Your Story
  • NIH Abbreviations

Subscribe Today!

Subscribe to The NIH Catalyst Newsletter and receive email updates.

Subscribe

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search