Skip to main content
NIH Intramural Research Program, Our Research Changes Lives

Navigation controls

  • Search
  • Menu

Social follow links

  • Podcast
  • Instagram
  • Twitter
  • YouTube
  • LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
      • Nobel Prize
      • Lasker Award
      • Breakthrough Prize
      • Shaw Prize
      • Presidential Early Career Award for Scientists and Engineers (PECASE)
      • Presidential Medal of Freedom
      • National Medal of Science
      • Searle Scholars
      • The National Academy of Sciences
      • The National Academy of Medicine
      • The National Academy of Engineering
      • The American Academy of Arts and Sciences
      • National Medal of Technology & Innovation
      • Samuel J. Heyman Service to America Medals
      • Crafoord Prize
      • Fellows of the Royal Society
      • Canada Gairdner Awards
    • Organization & Leadership
    • Our Programs
      • NCI
      • NEI
      • NHGRI
      • NHLBI
      • NIA
      • NIAAA
      • NIAID
      • NIAMS
      • NIBIB
      • NICHD
      • NIDA
      • NIDCD
      • NIDCR
      • NIDDK
      • NIEHS
      • NIMH
      • NIMHD
      • NINDS
      • NINR
      • NLM
      • CC
      • NCATS
      • NCCIH
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
      • Biomedical Engineering & Biophysics
      • Cancer Biology
      • Cell Biology
      • Chemical Biology
      • Chromosome Biology
      • Clinical Research
      • Computational Biology
      • Developmental Biology
      • Epidemiology
      • Genetics & Genomics
      • Health Disparities
      • Immunology
      • Microbiology & Infectious Diseases
      • Molecular Biology & Biochemistry
      • Molecular Pharmacology
      • Neuroscience
      • RNA Biology
      • Social & Behavioral Sciences
      • Stem Cell Biology
      • Structural Biology
      • Systems Biology
      • Virology
    • Principal Investigators
      • View by Investigator Name
      • View by Scientific Focus Area
    • Accomplishments
      • View All Accomplishments by Date
      • View All Health Topics
      • The Body
      • Health & Wellness
      • Conditions & Diseases
      • Procedures
    • Accelerating Science
      • Investing in Cutting-Edge Animal Models
      • Creating Cell-Based Therapies
      • Advancing Computational and Structural Biology
      • Combating Drug Resistance
      • Developing Novel Imaging Techniques
      • Charting the Pathways of Inflammation
      • Zooming in on the Microbiome
      • Uncovering New Opportunities for Natural Products
      • Stimulating Neuroscience Research
      • Pursuing Precision Medicine
      • Unlocking the Potential of RNA Biology and Therapeutics
      • Producing Novel Vaccines
    • Research in Action
      • View All Stories
      • Battling Blood-Sucking Bugs
      • Unexpected Leads to Curb Addiction
      • Shaping Therapies for Sickle Cell Disease
      • The Mind’s Map Maker
    • Trans-IRP Research Resources
      • Supercomputing
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
      • Get Involved with Clinical Research
      • Physician Resources
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
      • Stadtman Tenure-Track Investigators
        • Science, the Stadtman Way
      • Lasker Clinical Research Scholars
      • Independent Research Scholar
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
The NIH Catalyst: A Publication About NIH Intramural Research

National Institutes of Health • Office of the Director | Volume 30 Issue 2 • March–April 2022

Research Briefs

NEI, NCATS, NHGRI: RESEARCHERS DEVELOP FIRST STEM-CELL MODEL OF EYE DISEASE

image of multi-colored cells

CREDIT: NEI

NEI et al.: A human induced pluripotent stem-cell colony from a patient with an eye disease called OCA. The image was acquired using a confocal microscope and is stained for pluripotency marker proteins. The red color depicts transcription factor OCT4, green is SSEA4 protein, and blue represents the nucleus of the cells.

NEI researchers have developed the first stem-cell model for oculocutaneous albinism (OCA), a set of genetic conditions that adversely affect pigmentation in the eye, skin, and hair. The disease-in-a-dish model will be used to further study this condition and to test new drug candidates.

People with OCA lack pigment in their retinal pigment epithelium (RPE), which supports the function of important light-sensing regions of the eye. This can result in a malformed optic nerve and an underdeveloped fovea, the part of the retina responsible for high-acuity vision. There is no approved treatment for most forms of OCA, and it cannot be studied very well using animal models.

In this method, published in Stem Cell Reports, researchers collected skin cells from patients with OCA as well as from healthy volunteers. These cells were reprogrammed into induced pluripotent stem cells and then differentiated into RPE cells. The researchers were able to show that these cultured RPE cells exhibited the pigmentation defects of OCA in vitro, making them an effective model to study how lack of pigmentation affects RPE structure and function. According to the authors, these results represent a significant step toward developing novel treatments for OCA. (NIH authors: A. George, R. Sharma, T. Pfister, M. Asu-Abab, N. Hotaling, D. Bose, C. DeYoung, J. Chang, D.R. Adams, T. Cogliati, K. Bharti, and B.P. Brooks, Stem Cell Rep 17:173–186, 2022; DOI:10.1016/j.stemcr.2021.11.016)

[BY HENRY DIECKHAUS, NINDS]


NIDDK: DRUGS TARGETING SKELETAL MUSCLE METABOLISM MAY HELP TREAT DIABETES

Skeletal muscle (SKM) is responsible for more than 70% of the body’s glucose consumption, and insulin resistance in this tissue can reduce removal of sugar from the blood and lead to type 2 diabetes (T2D). In a recent study, NIDDK researchers found that clenbuterol selectively targets SKM sugar metabolism and shows promise as a potential new treatment option for people with T2D.

Clenbuterol is currently approved to treat asthma and chronic obstructive pulmonary disease and works by stimulating a receptor called the beta-2 adrenergic receptor (B2-AR), which is commonly found on the cell membranes of many types of tissue, including SKM.

In this study, the drug was fed to mice that were specially treated to induce a state of insulin resistance and elevated blood glucose, as seen in T2D. The researchers found that clenbuterol lowered blood glucose concentrations and improved whole-body glucose homeostasis despite having no effect on insulin sensitivity—a result that suggests stimulating B2-AR on the SKM membrane activates a pathway that enhances glucose metabolism. This hypothesis was supported by testing the drug protocol on genetically modified mice that lacked SKM B2-AR: Those mice did not show improved glucose tolerance with clenbuterol treatment. (NIH authors: J. Meister, D.B.J. Bone, L.F. Barella, R.J. Lee, A.H. Cohen, O. Gavrilova, Y. Cui, M. Chen, L.S. Weinstein, and Jürgen Wess, Nat Comm 13:article 22, 2022; DOI:10.1038/s41467-021-27540-w)

[BY JONATHAN CHU, NIAID]


NCI: PERSONALIZED IMMUNOTHERAPY A POTENTIAL TREATMENT FOR METASTATIC BREAST CANCER

scans showing cross-section of liver

CREDIT: NCI

Before TIL therapy, a woman with breast cancer had metastatic lesions in her chest wall (top, left) and liver (bottom, left). After receiving the immunotherapy, her tumors shrank completely, and recent scans (right) show that she remains cancer free more than five years later.

Researchers at NCI have discovered a potential new avenue to treat people with hormone receptor–positive metastatic breast cancer (mBrCa), traditionally thought of as an often-incurable stage of disease with limited response to current immunotherapies.

The results of an ongoing phase 2 clinical trial now show that using a type of immune cell called tumor-infiltrating lymphocytes (TILs), which are produced by some patients, can lead to substantial mBrCa tumor regression. TILs fight cancer by recognizing a fragment of a protein on the tumor’s surface produced by specific mutations in the tumor’s DNA. The study team used whole-genome sequencing to identify these mutations in tumor samples from 42 women with mBrCa and found that 28 of the women had TIL’s that recognized their tumor.

For six of these women, the researchers grew large numbers of their mutation-specific TILs in a lab and then returned them to each patient by intravenous infusion. Three showed substantial tumor regression. These findings show the promise of personalized immunotherapy as a treatment for mBrCa and call for further studies to determine whether it can maintain a robust and durable antitumor response. (NIH authors: N. Zacharakis, L.M. Huq, S.J. Seitter, S.P. Kim, J.J. Gartner, S. Sindiri, V.K. Hill, Y.F. Li, B.C. Paria, S. Ray, B. Gasmi, C. Lee, T.D. Prickett, M.R. Parkhurst, P.F. Robbins, M.M. Langhan, T.E. Shelton, A.Y. Parikh, S.T. Levi, J.M. Hernandez, C.D. Hoang, R.M. Sherry, J.C. Yang, S.A. Feldman, S.L. Goff, and S.A. Rosenberg, J Clin Oncol 2022; DOI:10.1200/JCO.21.02170)

[BY LARISA GEARHART-SERNA, NCI]


NIDA: SUICIDES BY DRUG OVERDOSE INCREASE IN SOME GROUPS DESPITE OVERALL DECLINE

A recent NIDA-led study published in the American Journal of Psychiatry found that intentional drug-overdose deaths saw an overall decline in recent years in the United States, but increased for certain groups. The investigators discovered that suicide rates by drug overdose increased in younger men and women (ages 15–24), elderly men and women (ages 75–84), and non-Hispanic Black women of all ages.

The research team analyzed data from between 2001 and 2019 from the Centers for Disease Control and Prevention’s National Vital Statistics System and focused on data related to overdose deaths that were classified as intentional.

Moreover, the investigators found that women were more likely to die from intentional drug overdose than men, and specifically, women ages 45–64 had the highest rates of suicide by drug overdose. They also discovered that intentional drug overdose deaths occurred more in spring and summer months and were lowest during December. And more people died by intentional drug overdose on Mondays than on other days of the week.

“This research underscores the importance of external support structures and environmental factors in determining a person’s suicide risk,” said co-author Emily Einstein. (NIH authors: B. Han, W.M. Compton, E.B. Einstein, J. Cotto, J.A. Hobin, J.B. Stein, and N.D. Volkow, Am J Psychiatry 179:163–165, 2022; DOI:10.1176/appi.ajp.2021.21060604)

[BY SUNITA CHOPRA, NCI]


NHGRI, NIAMS: NEW SPECIES OF MICROBES DISCOVERED ON HUMAN SKIN

silhouette of human body overlaid with colored shapes representing microbes

CREDIT: NHGRI

NHGRI, NIAMS: The microbiome is comprised of microorganisms that live in and on us and contribute to human health and disease. NIH researchers discovered new species of microbes that live on human skin.

The human skin is the physical barrier to foreign pathogens and plays a crucial role in maintaining an ideal microbial diversity. Shifts in this diversity are often associated with skin diseases such as acne or atopic dermatitis. NIH scientists and their colleagues recently catalogued these microbes in a massive collaborative study. The new catalog, called the Skin Microbial Genome Collection, was recently published in Nature Microbiology and successfully identifies almost 85% of the microorganisms present in a skin sample.

Newly identified were 174 bacterial species, 12 bacterial genera, and 20 jumbo phages, which are large viruses that infect bacteria. Researchers analyzed data from skin-swab samples and previously sequenced microbial samples taken from different body sites on 12 individuals. The authors used microbial culturing methods and genomic sequencing to make the new discoveries, which represent a 26% increase in the knowledge of skin bacterial diversity.

“The resource we've created will support research that explores skin health and seeks to understand the cause of these disorders,” said Julie Segre, head of the Microbial Genomics Section at NHGRI. (NIH authors: S.S. Kashaf, D.M. Proctor, C. Deming, M.E. Taylor, H.H. Kong, and J.A. Segre, Nat Microbiol 7:169–179, 2022; DOI:10.1038/s41564-021-01011-w)

[BY SATABDI NANDI, NIA]


NIDDK, NCI: BRAIN INFLUENCES INSULIN PRODUCTION

illustration of a puppeteer that looks like a brain; it's controlling shape eating a cake.

CREDIT: DIPTI AND PRAVIN KOPPIKAR, ARTSY HUES DESIGN STUDIO

This image depicts the brain as a master puppeteer manipulating several organs that regulate glucose homeostasis via neuronal projections.

A new NIH study is the first to show clear evidence of a brain-to–beta cell circuit that regulates insulin secretion in mammals. Led by NIDDK scientists, the study identified a neuronal circuit in mice that connects the brain to the beta cells of the pancreas, the cells that produce insulin. The researchers found that the circuit originates from a small set of neurons in the paraventricular nucleus of the hypothalamus, which communicate with the pancreatic beta cells to control insulin production and monitor blood glucose levels in the body.

When blood glucose became low, the neurons activated and communicated to the beta cells to stop producing insulin, preventing glucose concentrations from falling any further. Conversely, when the neurons were silenced, insulin release increased, and blood glucose dropped. The findings, which were published in Cell Metabolism, suggest that the brain elicits such protective mechanisms to overcome extreme and uncontrolled hypoglycemia. The authors propose that further research identifying similar neural circuits will advance understanding of the brain’s role in regulating blood glucose and its impact on physiology and disease. (NIH authors: I. Papazoglou, J. Lee, Z. Cui, C. Li, G. Fulgenzi, Y.J. Bahn, R.A. Piñol, M.J. Krashes, and S.G. Rane, Cell Metab 34:285–298, 2022; DOI:10.1016/j.cmet.2021.12.020)

[BY: LISA YUAN, NIDDK]

This page was last updated on Tuesday, May 17, 2022

  • Issue Overview
  • Features
    • Meet the Makers
    • Itching for Answers
    • Meet 26 New Stadtman Investigators
    • New Lasker Scholars Begin Breaking New Ground
    • How Community-Engaged Research Combats Health Disparities
    • COVID-19 Timeline at NIH (January-February 2022)
  • Departments
    • From the Deputy Director for Intramural Research
    • News Brief
    • News You Can Use
    • Photographic Moment
    • The Training Page
    • Research Briefs
    • Announcements
  • Issue Contents
  • Download this issue as a PDF

Catalyst menu

  • Current Issue
  • Previous Issues
  • About The NIH Catalyst
  • Contact The NIH Catalyst
  • Share Your Story
  • NIH Abbreviations

Subscribe Today!

Subscribe to The NIH Catalyst Newsletter and receive email updates.

Subscribe

Get IRP Updates

Subscribe

  • Email
  • Print
  • Share Twitter Facebook LinkedIn

Main navigation

  • About Us
    • What Is the IRP?
    • History
    • Honors
    • Organization & Leadership
    • Our Programs
    • Research Campus Locations
    • Contact Information
  • Our Research
    • Scientific Focus Areas
    • Principal Investigators
    • Accomplishments
    • Accelerating Science
    • Research in Action
    • Trans-IRP Research Resources
    • IRP Review Process
    • Commercializing Inventions
  • NIH Clinical Center
    • Clinical Center Facilities
    • Clinical Faculty
    • Advancing Translational Science
    • Clinical Trials
  • News & Events
    • In the News
    • I am Intramural Blog
    • Speaking of Science Podcast
    • SciBites Video Shorts
    • The NIH Catalyst Newsletter
    • Events
  • Careers
    • Faculty-Level Scientific Careers
    • Trans-NIH Scientific Recruitments
    • Scientific & Clinical Careers
    • Administrative Careers
  • Research Training
    • Program Information
    • Training Opportunities
    • NIH Work/Life Resources
  • Department of Health and Human Services
  • National Institutes of Health
  • USA.gov

Footer

  • Home
  • Contact Us
  • IRP Brand Materials
  • HHS Vulnerability Disclosure
  • Web Policies & Notices
  • Site Map
  • Search