Speaking of Science Podcast

Dr. Jerry Yakel — Acetylcholine Receptors and Neurological Disease

The neurons in our brains use both electrical and chemical signals to communicate. When those signals are not generated or interpreted correctly, serious problems can arise. Dr. Jerry Yakel is a neurobiologist studying acetylcholine receptors, which allow neurons to turn signals transmitted using the chemical acetylcholine into electrical messages. Because acetylcholine receptors are found on so many nerve cells, numerous neurological disorders can arise when they fail to work properly, including Alzheimer’s, Parkinson’s, and epilepsy. By studying these receptors, Dr. Yakel’s team hopes to better understand how they contribute to disease, which could eventually lead to therapies for a variety of neurological conditions.

Dr. Armin Raznahan — Genes, Brain Structure, and Neuropsychiatric Disorders

Anybody who observes a person with a neurological illness like Tourette syndrome or schizophrenia can clearly see how these conditions affect behavior. What’s much more difficult to determine is how these ailments relate to changes in the brain. Dr. Armin Raznahan is a child psychiatrist who uses a genetics-first approach and state-of-the-art neuroimaging tools to examine how the size and shape of the brain differ in children and adolescents with neuropsychiatric disorders compared to healthy individuals. His discoveries about these illnesses could ultimately improve our ability to identify and treat people who have them, as well as predict which children might develop them.

Dr. Catharine Bosio — The Weird and Deadly Francisella Tularensis Bacterium

Our houses, workplaces, and even the air we breathe are teeming with microbes, some of which can cause severe illness. Dr. Catharine Bosio is an immunologist studying how airborne pathogens infect and alter cells in the lungs. Her work focuses in particular on a bacterium called Francisella tularensis, which causes a life-threatening disease called tularemia and has the unique ability to change how energy-producing mitochondria function in immune cells. Dr. Bosio's experiments with these deadly bacteria could lead to more effective ways to diagnose and treat tularemia and other infectious diseases.

Dr. Cynthia Dunbar — Stem Cell Therapies for Blood and Immune System Diseases

Our blood is made up of a diverse array of different cells, all of which originate from the same source: the ‘hematopoietic’ stem cells in our bone marrow. Dr. Cynthia Dunbar is a clinician working to understand how these stem cells grow, divide, and ultimately produce the cells that carry oxygen around the body and fight disease. Learning to safely transplant and manipulate hematopoietic stem cells could lead to treatments for a wide variety of diseases caused by a lack of properly functioning blood cells, including leukemia and aplastic anemia.

Dr. Ira Pastan and Dr. Michael Gottesman — Cancer Immunotoxins and Multidrug Resistance

This episode features two legends of biomedical research. In the realm of human health and longevity, cancer’s ability to mutate, grow, and thwart the body’s natural defenses presents one of the greatest scientific challenges of our time. In 2001, Dr. Ira Pastan led the creation of a new type of cancer drug, a recombinant immunotoxin, that promised to directly target and kill cancer cells. After years of research and clinical trials, this first-generation immunotoxin was approved by the FDA in September 2018 for certain adults with hairy cell leukemia, providing a promising new therapy to a group of patients who previously had few other options.

And we have a special guest host for this episode, Dr. Michael Gottesman, who, as the NIH Deputy Director for Intramural Research, leads the thousands of researchers and clinicians working within the IRP each day — while also conducting groundbreaking research in his own laboratory into how cancer cells become resistant to chemotherapy and other anti-cancer drugs. Drs. Gottesman and Pastan are two guiding lights in our quest to overcome the obstacles to effectively treating cancer in order to improve and save potentially millions of lives. As friends and colleagues for many years, they also trained and collaborated with several of the most celebrated IRP researchers who made extraordinary breakthroughs for human health.

Dr. Dori Germolec — Environmental Chemicals Versus the Immune System

Dr. Dori Germolec is a biologist studying how the chemicals in our environment affect the immune system, including toxic or carcinogenic effects of molds and dietary supplements. From bisphenols and flame retardants to arsenic in the drinking water and polycyclic aromatic hydrocarbons, we are all exposed to a mixture of different compounds on a daily basis. Dr. Germolec’s research as part of the National Toxicology Program informs agencies like the EPA and FDA about the potential hazards of environmental toxins so that chemicals and substances can be properly regulated to keep people safe and healthy, both at home and in the workplace.

Dr. Dennis Drayna — Part 2: Genetics of Stuttering and Communication Disorders

This is Part 2 of our conversation with Dr. Dennis Drayna, a human geneticist who has identified mutations in several genes that cause communications disorders, particularly stuttering, using family- and population-based genetic methods. Dr. Drayna's team studies the biochemical and cellular effects of these mutations and how they may cause specific neuronal pathologies. With so much to cover, we divided this episode into two parts. Here, we continue to explore stuttering research and delve into Dr. Drayna’s perspectives about research and research training at the NIH, as well as his lab’s ground-breaking work on how genetic variation affects the sense of taste and how population-specific genetic factors can influence preference for menthol in cigarettes, a common flavor additive that is particularly popular among African American smokers.

Dr. Dennis Drayna — Genetics of Stuttering and Communication Disorders

Dr. Dennis Drayna is a human geneticist who has identified mutations in several genes that cause communications disorders, particularly stuttering, using family- and population-based genetic methods. Dr. Drayna's team studies the biochemical and cellular effects of these mutations and how they may cause specific neuronal pathologies. With so much to cover, we divided this episode into two parts. Here, in Part 1, we discuss Dr. Drayna’s research into the genetics of stuttering. In Part 2, to follow, we continue to explore stuttering research and delve into Dr. Drayna’s perspectives about research and research training at the NIH, as well as his lab’s ground-breaking work on how genetic variation affects the sense of taste and how population-specific genetic factors can influence preference for menthol in cigarettes, a common flavor additive that is particularly popular among African American smokers.

Dr. Bill Gahl — Medical Genetics and Hope for Rare Diseases

When people refer to the NIH as the “National Institutes of Hope,” Dr. Bill Gahl is one of the many people who come to mind. Dr. Gahl is a medical geneticist working to help patients with rare and undiagnosed diseases. His research group focuses on inborn errors of metabolism, which include defects in the body’s biochemical processes caused by rare genetic disorders, such as cystinosis, Hermansky-Pudlak syndrome, alkaptonuria, and ciliopathies. Transcending biomedical boundaries to take advantage of the IRP’s unique team-science environment, Dr. Gahl led the creation of the NIH’s Undiagnosed Diseases Program to provide answers and possible treatments for people with mysterious conditions that have long eluded diagnosis.

Dr. Christine Alewine — Treating Pancreatic Cancer with New Immunotoxin Strategies

Pancreatic cancer kills more than 40,000 Americans each year, and just 6% of patients survive five years or more after diagnosis, because the disease metastasizes very early in its development and is resistant to most current treatments. Dr. Christine Alewine is a physician-scientist exploring new treatment strategies for pancreatic cancer. Her lab and clinic are testing and refining two recombinant immunotoxins that target a protein called mesothelin that is present on the surface of several types of cancer tumor cells, including pancreatic, ovarian, and some lung cancers. If clinical trials show that the drug is safe and effective, it could lead to much needed systemic therapies for these cancer patients.

This page was last updated on Friday, January 14, 2022