In the News

Research advances from the National Institutes of Health (NIH) Intramural Research Program (IRP) often make headlines. Read the news releases that describe our most recent findings:

IRP researchers work to preserve fertility for people undergoing gene therapy

Novel conditioning agent shows promise in animal models of sickle cell disease

Researchers at the National Institutes of Health have created a novel gene therapy procedure that could preserve fertility in people with sickle cell disease and other genetic blood conditions. Infertility is a high-risk and long-term side effect associated with current bone marrow transplantation and gene therapy approaches to treat sickle cell disease. It is a common reason people of reproductive age give for not pursuing these therapies. 

The study, which appears in Nature Communications, describes the successful testing in animals of an antibody-drug conjugate, or conditioning agent, that exclusively targets blood-forming stem cells in the bone marrow. Conditioning agents are used in gene therapy to remove diseased stem cells and allow healthy stem cells to form. This new agent, called CD117-ADC, does not appear to damage other organs during the conditioning process. It is less toxic than the conventional agent now used for gene therapy in humans, called busulfan, which may cause ovarian failure in women and may stop sperm production in men, resulting in infertility.

AI and machine learning can successfully diagnose polycystic ovary syndrome

NIH study reviews 25 years of data and finds AI/ML can detect common hormone disorder

Artificial intelligence (AI) and machine learning (ML) can effectively detect and diagnose Polycystic Ovary Syndrome (PCOS), which is the most common hormone disorder among women, typically between ages 15 and 45, according to a new study by the National Institutes of Health. Researchers systematically reviewed published scientific studies that used AI/ML to analyze data to diagnose and classify PCOS and found that AI/ML based programs were able to successfully detect PCOS.

“Given the large burden of under- and mis-diagnosed PCOS in the community and its potentially serious outcomes, we wanted to identify the utility of AI/ML in the identification of patients that may be at risk for PCOS,” said Janet Hall, M.D., senior investigator and endocrinologist at the National Institute of Environmental Health Sciences (NIEHS), part of NIH, and a study co-author. “The effectiveness of AI and machine learning in detecting PCOS was even more impressive than we had thought.”

PCOS occurs when the ovaries do not work properly, and in many cases, is accompanied by elevated levels of testosterone. The disorder can cause irregular periods, acne, extra facial hair, or hair loss from the head. Women with PCOS are often at an increased risk for developing type 2 diabetes, as well as sleep, psychological, cardiovascular, and other reproductive disorders such as uterine cancer and infertility.

“PCOS can be challenging to diagnose given its overlap with other conditions,” said Skand Shekhar, M.D., senior author of the study and assistant research physician and endocrinologist at the NIEHS. “These data reflect the untapped potential of incorporating AI/ML in electronic health records and other clinical settings to improve the diagnosis and care of women with PCOS.”

High levels of particulate air pollution associated with increased breast cancer incidence

NIH researchers combined historical air quality data with breast cancer data from large U.S. study

Researchers at the National Institutes of Health found that living in an area with high levels of particulate air pollution was associated with an increased incidence of breast cancer. The study, published in the Journal of the National Cancer Institute, is one of the largest studies to date looking at the relationship between outdoor air pollution, specifically fine particulate matter, and breast cancer incidence. The research was done by scientists at the National Institute of Environmental Health Sciences (NIEHS) and the National Cancer Institute (NCI), both part of NIH.

The researchers saw that the largest increases in breast cancer incidence was among women who on average had higher particulate matter levels (PM2.5) near their home prior to enrolling in the study, compared to those who lived in areas with lower levels of PM2.5. Particulate matter is a mixture of solid particles and liquid droplets found in the air. It comes from numerous sources, such as motor vehicle exhaust, combustion processes (e.g., oil, coal), wood smoke/vegetation burning, and industrial emissions. The particulate matter pollution measured in this study was 2.5 microns in diameter or smaller (PM2.5), meaning the particles are small enough to be inhaled deep into the lungs. The Environmental Protection Agency has a website known as Air Now where residents can enter their zip code and get the air quality information, including PM2.5 levels, for their area.

“We observed an 8 percent increase in breast cancer incidence for living in areas with higher PM2.5 exposure. Although this is a relatively modest increase, these findings are significant given that air pollution is a ubiquitous exposure that impacts almost everyone,” said Alexandra White, Ph.D., lead author and head of the Environment and Cancer Epidemiology Group at NIEHS. “These findings add to a growing body of literature suggesting that air pollution is related to breast cancer.”

IRP investigates multidrug-resistant bacterium emerging in community settings

Researchers study confluence of multidrug resistance and hypervirulence among Klebsiella pneumoniae

New “hypervirulent” strains of the bacterium Klebsiella pneumoniae have emerged in healthy people in community settings, prompting a National Institutes of Health research group to investigate how the human immune system defends against infection. After exposing the strains to components of the human immune system in a laboratory “test tube” setting, scientists found that some strains were more likely to survive in blood and serum than others, and that neutrophils (white blood cells) are more likely to ingest and kill some strains than others. The study, published in mBio, was led by researchers at NIH’s National Institute of Allergy and Infectious Diseases (NIAID).

“This important study is among the first to investigate interaction of these emergent Klebsiella pneumoniae strains with components of human host defense,” Acting NIAID Director Hugh Auchincloss, M.D., said. “The work reflects the strength of NIAID’s Intramural Research Program. Having stable research teams with established collaborations allows investigators to draw on prior work and quickly inform peers about new, highly relevant public health topics.”

a human neutrophil (red) containing ingested Klebsiella pneumoniae (purple)

A human neutrophil (red) containing ingested Klebsiella pneumoniae (purple).

IRP study examines connections between drinking water quality and increased lung infections in people with cystic fibrosis

High levels of some minerals and metals in environmental water supplies may increase the risk of nontuberculous mycobacteria (NTM) pulmonary infections in people with cystic fibrosis, according to a new study from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health. The study, appearing in Environmental Epidemiology, found the presence of the metals molybdenum and vanadium along with sulfate—a collection of mineral salts—in the U.S. municipal water system was associated with an increased incidence of NTM pulmonary infections, the leading cause of drinking-water associated illnesses.

Prior studies have shown that certain environmental conditions, including the presence of trace metals, likely contribute to a higher abundance of NTM in the water. Two of the most common forms of NTM bacteria in the U.S. are Mycobacterium avium complex (MAC) and M. abscessus. Both are linked to chronic lung infections in people with cystic fibrosis and other lung diseases. More than 35,000 people in the U.S. have cystic fibrosis, which causes the body to produce thick mucus, causing lung damage and trapping bacteria, increasing the likelihood of lung infection. This study measured whether the concentration of metals and minerals in the water had any influence on the probability of MAC and M. abscessus infection in people with cystic fibrosis.

A magnified view of a petri dish culture plate with cultivated colonies of the bacterium Mycobacterium avium.

A magnified view of a petri dish culture plate with cultivated colonies of the bacterium Mycobacterium avium. Color effects have been added to image for visual interest.

Parkinson’s disease gene variant found in study of some people of African ancestry

NIH-supported, international study underscores importance of research of diverse populations

A gene variant found almost exclusively in the genomes of people of African ancestry increases the risk of developing Parkinson’s disease, according to an international study of nearly 198,000 participants with this genetic background. Published in The Lancet Neurology, the study results suggest the risk may be linked to a variant in the gene encoding β-glucocerebrosidase (GBA1), a protein known to control how cells in the body recycle proteins.

The study was led by scientists at the National Institutes of Health; the University College, London; and the University of Lagos, Nigeria. Although more research is needed to understand the role of environmental and other factors in these populations, the scientists found that those who carry one copy of the gene are about 1.5 times more likely to have Parkinson’s disease than those who have no copies whereas those who carry two copies are about 3.5 times more likely.

“To effectively treat Parkinson’s and truly any disease, we must study diverse populations to fully understand what the drivers and risk factors are for these disorders,” said Andrew B. Singleton, Ph.D., director, NIH Intramural Center for Alzheimer’s Related Dementias (CARD) and a study author. “These results support the idea that the genetic basis for a common disease can differ by ancestry, and understanding these differences may provide new insights into the biology of Parkinson’s disease.”

scatterplot showing novel gene variant involved in Parkinson's disease risk

Scientists discovered a gene variant, found almost exclusively in the genomes of individuals of African ancestry, that increases the risk of having Parkinson’s disease. Image created on BioRender.com, courtesy of Singleton lab

Researchers assemble the first complete sequence of a human Y chromosome

New sequence reveals genomic factors in fertility, including sperm production

An international research team has generated the first truly complete sequence of a human Y chromosome, the final human chromosome to be fully sequenced. The new sequence, which fills in gaps across more than 50% of the Y chromosome’s length, uncovers important genomic features with implications for fertility, such as factors in sperm production. The study, led by the Telomere-to-Telomere (T2T) Consortium, a team of researchers funded by the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, was published today in Nature.

The Y chromosome, along with the X chromosome, is often discussed for its role in sexual development. While these chromosomes play a central role, the factors involved in human sexual development are spread across the genome and very complex, giving rise to the array of human sex characteristics found among male, female and intersex individuals. These categories are not equivalent to gender, which is a social category. Additionally, recent work demonstrates that genes on the Y chromosome contribute to other aspects of human biology, such as cancer risk and severity.

When researchers completed the first human genome sequence 20 years ago, gaps were left in the sequences of all 24 chromosomes. However, unlike the small gaps sprinkled across the rest of the genome sequence — gaps that the T2T Consortium filled in last year — over half of the Y chromosome’s sequence remained a mystery.

diagram of human chromosomes highlighting the Y chromosome

The human Y chromosome is the final human chromosome to be fully sequenced. The new sequence, which fills in gaps across more than 50% of the Y chromosome’s length, uncovers important genomic features with implications for fertility, such as factors in sperm production.

IRP zebrafish research included in U.S. Postal Service’s “Life Magnified” stamps

A microscopy image created by National Institutes of Health researchers is part of the “Life Magnified” stamp panel issued today by the United States Postal Service (USPS). The NIH zebrafish image, which was taken to understand lymphatic vessel development in the brain, merges 350 individual images to reveal a juvenile zebrafish with a fluorescently tagged skull, scales and lymphatic system.

“Zebrafish are used as a model for typical and atypical human development. It is surprising how much we have in common with zebrafish,” said Diana W. Bianchi, director of NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), which generated the image. “NIH research affects our lives every day. My hope is that this postage stamp will help spur conversations and appreciation for the importance of basic science research.”

The image was taken by NICHD’s Daniel Castranova, an aquatic research specialist, with assistance from former trainee Bakary Samasa. The research was conducted in the Section on Vertebrate Organogenesis, led by principal investigator Brant Weinstein, Ph.D. The lab is devoted to understanding mechanisms guiding the formation of blood and lymphatic vessels. The image also received top honor in the 46th annual Nikon Small World Photomicrography Competition in 2020.

juvenile zebrafish with a fluorescently tagged skull, scales and lymphatic system

NIH researchers created the zebrafish microscopy image as part of their research on lymphatic vessel development in the brain.

Only 1 in 5 U.S. adults with opioid use disorder received medications to treat it in 2021

NIH and CDC study finds telehealth associated with increased likelihood of receiving evidence-based standard of care

In 2021, an estimated 2.5 million people aged 18 years or older in the U.S. had opioid use disorder in the past year, yet only 1 in 5 of them (22%) received medications to treat it, according to a new study. Some groups were substantially less likely to receive medication for opioid use disorder, including Black adults, women, those who were unemployed, and those in nonmetropolitan areas.

Published today in JAMA Network Open, this study was a collaborative effort between researchers at the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health, and the National Center for Injury Prevention and Control, a part of the Centers for Disease Control and Prevention (CDC). The findings highlight that evidence-based medications for people with opioid use disorder — including buprenorphine, methadone, and naltrexone — continue to be vastly underused.

“Medications for opioid use disorder are safe and effective. They help sustain recovery and prevent overdose deaths,” said Nora Volkow, M.D., director of the National Institute on Drug Abuse. “Failing to use safe and lifesaving medications is devastating for people denied evidence-based care. What’s more, it perpetuates opioid use disorder, prolongs the overdose crisis, and exacerbates health disparities in communities across the country.”

NIH selects Dr. Jeanne Marrazzo as director of the National Institute of Allergy and Infectious Diseases

Lawrence A. Tabak, D.D.S., Ph.D., acting director for the National Institutes of Health, has named Jeanne M. Marrazzo, M.D., as director of NIH’s National Institute of Allergy and Infectious Diseases (NIAID). Dr. Marrazzo is currently the director of the Division of Infectious Diseases at the University of Alabama at Birmingham. She is expected to begin her role as NIAID Director in the fall. NIAID conducts and supports basic and applied research to better understand, treat and ultimately prevent infectious, immunologic and allergic diseases.

“Dr. Marrazzo brings a wealth of leadership experience from leading international clinical trials and translational research, managing a complex organizational budget that includes research funding and mentoring trainees in all stages of professional development,” said Dr. Tabak. “I look forward to welcoming Dr. Marrazzo to the NIH leadership team. I also want to extend my gratitude to Hugh Auchincloss, Jr., M.D., for serving as acting director of NIAID after long-time director Anthony S. Fauci, M.D., stepped down in December 2022.”

As NIAID director, Dr. Marrazzo will oversee NIAID’s budget of $6.3 billion, which supports research to advance the understanding, diagnosis and treatment of infectious, immunologic and allergic diseases. NIAID supports research at universities and research organizations around the United States and across NIAID’s 21 laboratories, including the Vaccine Research Center on NIH’s main campus in Bethesda, Maryland, and the Rocky Mountains Laboratories in Hamilton, Montana. NIAID also has a unique mandate to respond to emerging and re-emerging public health threats at home and abroad. The NIAID research response to outbreaks of infectious diseases, from HIV to Ebola to COVID-19, has led to new therapies, vaccines, diagnostic tests and other technologies.

Dr. Jeanne Marrazzo

Jeanne M. Marrazzo, M.D.

Continue Exploring the IRP

This page was last updated on Wednesday, May 11, 2022