Research advances from the National Institutes of Health (NIH) Intramural Research Program (IRP) often make headlines. Read the news releases that describe our most recent findings:
Saxophonist Joey Berkley was living his dream: he was playing jazz in New York City. But about 20 years ago, he noticed his left hand wasn’t cooperating. It got worse and worse.
“As soon as I picked my horn up and touched — literally just touched my horn — my hands would twist into pretzel shapes,” Berkley recalled in a conversation with Morning Edition host A Martinez.
Berkley was experiencing focal dystonia, a movement disorder marked by involuntary muscle contractions.
He said he “muscled through it” as best he could. But that meant he wasn’t just pressing down on the keys of his sax — he was crushing them. “My fingers would literally be bleeding afterwards,” he said. “I had to quit playing.”
Joey Berkley learned of an experimental procedure at the National Institutes of Health in Bethesda, Maryland, that involved placing an electrode directly into his brain.
Key cells in the brain region known as the hippocampus are formed in the base of the brain late in fetal life and undertake a long journey before reaching their final destination in the center of the brain shortly after birth, according to researchers at the National Institutes of Health.
New findings in mice suggest that the timing when the neurotransmitter acetylcholine is released in the brain’s hippocampus may play a key role in regulating the strength of nerve cell connections, called synapses. Understanding the complex nature of neuronal signaling at synapses could lead to better understanding of learning and memory, and novel treatments for relevant disorders, such as Alzheimer’s disease and schizophrenia.
Researchers have long known that dopamine, a brain chemical that plays important roles in the control of normal movement, and in pleasure, reward and motivation, also plays a central role in substance abuse and addiction. In a new study conducted in animals, scientists found that a specific dopamine receptor, called D2, on dopamine-containing neurons controls an organism’s activity level and contributes to motivation for reward-seeking as well as the rewarding effects of cocaine.
Scientists at the National Institutes of Health have uncovered a pathway in mice that allows white fat—a contributor to obesity and type 2 diabetes—to burn calories in a way that’s normally found in brown fat and muscle. The findings are in the July 6 edition of Cell Metabolism.
Researchers at Howard Hughes Medical Institute’s Janelia Farm Research Campus, the National Institutes of Health, and Florida State University have developed and applied a new light microscopy technique that will allow them to determine the arrangement of proteins that make up the individual organelles, or structures, within a cell.
The microscope and the technology that make it possible are described in an article appearing on-line in the August 10, 2006, issue of Science Express. The technique was conceived by Eric Betzig, Ph.D., and Harald Hess, Ph.D. while working as independent inventors and later as investigators at Janelia Farm, which subsequently supported their effort on the project. Funding for the project was also provided by the NIH. Drs. Betzig and Hess built the microscope and demonstrated the method at the NIH, while working with Jennifer Lippincott-Schwartz, Ph.D. and her colleagues in the Cell Biology and Metabolism Branch of the National Institute of Child Health and Human Development. Also working on the project was Michael Davidson of the National High Magnetic Field Laboratory at Florida State University.