IRP researchers develop “hibernation in a dish” to study how animals adapt to the cold
Findings may help expand window for storing organs before transplantation, therapeutic hypothermia
Researchers at the National Eye Institute have discovered cellular mechanisms that help the 13-lined ground squirrel survive hibernation. Their findings could be a step to extending storage of human donor tissues awaiting transplantation and protecting traumatic brain injury patients who undergo induced hypothermia. NEI is part of the National Institutes of Health. The findings were published in the May 3 issue of Cell.
During hibernation, the 13-lined ground squirrel endures near freezing temperatures, dramatically slowing its heart rate and respiration. How the squirrel’s tissues adapt to the cold and metabolic stress has confounded researchers.
A structure in cells known to be vulnerable to cold is the microtubule cytoskeleton. This network of small tubes within a cell provides structural support and acts as a kind of inner cellular railway system, transporting organelles and molecular complexes vital for a cell’s survival.
In a series of experiments, the research team led by Wei Li, Ph.D., a senior investigator in the NEI Retinal Neurophysiology Section and Jingxing Ou, Ph.D., a postdoctoral scientist in Li’s lab, compared cells from non-hibernators to cells from the ground squirrel to determine differences in their response to cold. They found that in ground squirrel neurons the microtubule cytoskeleton remains intact while it deteriorates in the neurons of humans and other non-hibernating animals, including rats.
“By understanding the biology of cold adaptation in hibernation, we may be able to improve and broaden the applications of induced hypothermia in the future, and perhaps prolong the viability of organs prior to transplantation,” Li said. “Kidneys, for example, are typically stored for no more than 30 hours. After that, the tissue starts to deteriorate, impairing the organ’s ability to function properly after its been rewarmed and reperfused. Heart, lungs and livers have an even shorter shelf life.”
This page was last updated on Friday, January 21, 2022