Yeka Aponte, Ph.D.
Senior Investigator
Cellular and Neurocomputational Systems Branch, Neuronal Circuits and Behavior Unit
NIDA
Research Topics
Our interest is to understand how genetically-identified cell types and their projections drive behaviors essential for survival. Using the mouse as our model system, we apply optogenetics and chemogenetics to manipulate neuronal circuits in awake, behaving mice. In addition, we use a combination of electrophysiology, two-photon fluorescence endomicroscopy, and behavioral assays to elucidate the neuronal basis of survival behaviors, such as feeding, and to determine how these neuronal circuits drive the rewarding and addictive nature of food intake. Evidence for the addictive properties of food has been growing progressively throughout the last decade. Both addiction and overeating are disorders by which individuals learn rewarding associations between stimuli such as drugs of abuse and highly palatable food. Therefore, our laboratory is interested in understanding the addictive aspects of feeding behaviors. We study this topic at the level of neuronal circuits in the context of behaviors, cell types, and synaptic connectivity. Neuronal circuits are composed of diverse collections of cell types, each having a distinct set of synaptic connections and performing specific functions. To understand how neuronal circuits drive behaviors, it is essential to examine the function of specific cell types in the circuit. However, studies have been mostly unable to identify the cell types involved in specific behaviors. Furthermore, experiments to date have largely been unable to determine when specific cell types are active to provide quantitative relationships between circuit activity and behavior. Ultimately, understanding the mechanisms regulating food intake and the rewarding and addictive nature of food will enhance our ability to battle disorders such as obesity, diabetes, anorexia, bulimia, and addiction.
Biography
Dr. Aponte received her Ph.D. from the University of Freiburg. Working with Prof. Dr. Peter Jonas she studied the functional properties of hyperpolarization-activated cation channels and dendritic calcium dynamics in fast-spiking hippocampal interneurons. During her postdoctoral work with Dr. Scott Sternson at the Janelia Farm Research Campus of the Howard Hughes Medical Institute (JFRC/HHMI), she studied neuronal circuits controlling feeding behavior using optogenetic techniques in awake, behaving mice. She also applied in vivo electrophysiological methods to molecularly-defined neuron populations. She joined the NIDA/IRP as an Earl Stadtman Tenure-Track Investigator and her laboratory uses a combination of optogenetics, chemogenetics, electrophysiology, two-photon fluorescence endomicroscopy, and behavioral assays to elucidate the neuronal mechanisms regulating the rewarding nature of food intake and drug abuse.
Selected Publications
- Siemian JN, Arenivar MA, Sarsfield S, Aponte Y. Hypothalamic control of interoceptive hunger. Curr Biol. 2021;31(17):3797-3809.e5.
- Siemian JN, Arenivar MA, Sarsfield S, Borja CB, Erbaugh LJ, Eagle AL, Robison AJ, Leinninger G, Aponte Y. An excitatory lateral hypothalamic circuit orchestrating pain behaviors in mice. Elife. 2021;10.
- Siemian JN, Arenivar MA, Sarsfield S, Borja CB, Russell CN, Aponte Y. Lateral hypothalamic LEPR neurons drive appetitive but not consummatory behaviors. Cell Rep. 2021;36(8):109615.
- Aponte Y. Illuminating the brain: an interview with Karl Deisseroth. Neurophotonics. 2021;8(4):040401.
- Laing BT, Anderson MS, Bonaventura J, Jayan A, Sarsfield S, Gajendiran A, Michaelides M, Aponte Y. Anterior hypothalamic parvalbumin neurons are glutamatergic and promote escape behavior. Curr Biol. 2023;33(15):3215-3228.e7.
Related Scientific Focus Areas
Social and Behavioral Sciences
View additional Principal Investigators in Social and Behavioral Sciences
Molecular Biology and Biochemistry
View additional Principal Investigators in Molecular Biology and Biochemistry
This page was last updated on Friday, November 2, 2018