Robert Tycko, Ph.D.

Senior Investigator

Laboratory of Chemical Physics

NIDDK

Building 5, Room 409
5 Memorial Dr
Bethesda, MD 20814

+1 301 402 8272

robert.tycko@nih.gov

Research Topics

The purpose of our research is twofold: (1) to expand the capabilities of experimental techniques, especially solid state NMR techniques, for probing structural properties of molecules with central roles in biology and human disease; (2) to provide new structural and mechanistic information about specific biomolecular systems, including protein assemblies that are associated with Alzheimer’s disease, type 2 diabetes, and AIDS.

Current Research

My lab is currently pursuing several distinct but inter-related projects. We are using solid state NMR and electron microscopy to characterize molecular structures of amyloid-β fibrils, including fibrils that develop in brain tissue of Alzheimer’s disease patients. We are developing new experimental methods that allow detailed molecular structural studies of transient intermediates in processes such as protein folding, ligand binding, peptide aggregation, and protein self-assembly. We are investigating the structural and physical basis for fibril formation by low-complexity protein sequences. We are using solid state NMR to characterize the structures of protein lattices within mature and immature HIV-1 virions. And we are developing ultra-low-temperature methods for sensitivity enhancement in biomolecular solid state NMR and resolution enhancement in magnetic resonance imaging.

Biography

  • Senior Investigator, LCP, NIDDK, NIH, 1994-present
  • Member of Technical Staff (Principal Investigator), Physical Chemistry Research Department, AT&T Bell Laboratories, 1986-1994
  • Postdoctoral Researcher, University of Pennsylvania, 1984-1986
  • Ph.D., University of California at Berkeley, 1984
  • A.B., Princeton University, 1980
  • Fellow of the American Physical Society (1997), the American Association for the Advancement of Science (2005), the International Society of Magnetic Resonance (2008), and the American Academy of Arts and Sciences (2017)

Selected Publications

  1. Jeon J, Thurber KR, Ghirlando R, Yau WM, Tycko R. Application of millisecond time-resolved solid state NMR to the kinetics and mechanism of melittin self-assembly. Proc Natl Acad Sci U S A. 2019;116(34):16717-16722.

  2. Chen HY, Tycko R. Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution. J Magn Reson. 2018;287:47-55.

  3. Qiang W, Yau WM, Lu JX, Collinge J, Tycko R. Structural variation in amyloid-β fibrils from Alzheimer's disease clinical subtypes. Nature. 2017;541(7636):217-221.

  4. Murray DT, Kato M, Lin Y, Thurber KR, Hung I, McKnight SL, Tycko R. Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains. Cell. 2017;171(3):615-627.e16.

  5. Thurber K, Tycko R. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning. J Magn Reson. 2016;264:99-106.


This page was last updated on October 25th, 2019