Robert B. Best, Ph.D.

Senior Investigator

Theoretical Biophysical Chemistry Section, Laboratory of Chemical Physics

NIDDK

Building 5, Room 130
5 Memorial Dr
Bethesda, MD 20814

+1 301 496 5414

robert.best2@nih.gov

Research Topics

The broad goal of my work is the development of novel simulation methodology and theory for better understanding protein function and evolution. Specifically, we are interested in following interrelated topics: the molecular mechanisms of protein folding, protein misfolding and protein aggregation, and in the properties and function of intrinsically disordered proteins. We are also interested in the evolution of sequences which fold to stable structures. Our aim is to help to interpret experiments and to answer questions which would be very difficult to directly address experimentally.

Recent work has focused on the following:
  • design of protein sequences using evolutionary information
  • co-translational protein folding
  • the optimization of protein force fields using empirical data for peptides and macromolecules in solution;
  • interpretation of single-molecule fluorescence or and small-angle X-ray scattering experiments using simulation and theory;
  • coarse-grained master equations as a tool for interpreting peptide dynamics in simulations;
  • diffusion models of protein folding;
  • development of coarse-grained models for protein association and phase separation
  • methods for identifying cryptic binding pockets in proteins.

To view more about my research, visit my lab's website.

Biography

  • United Kingdom Royal Society University Research Fellow, University of Cambridge, 2007–2012
  • Ph.D., University of Cambridge, 2003
  • M.Sc. University of Cape Town, 2000

Selected Publications

  1. Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B. Extreme disorder in an ultrahigh-affinity protein complex. Nature. 2018;555(7694):61-66.

  2. Tian P, Louis JM, Baber JL, Aniana A, Best RB. Co-Evolutionary Fitness Landscapes for Sequence Design. Angew Chem Int Ed Engl. 2018;57(20):5674-5678.

  3. Domański J, Sansom MSP, Stansfeld PJ, Best RB. Balancing Force Field Protein-Lipid Interactions To Capture Transmembrane Helix-Helix Association. J Chem Theory Comput. 2018;14(3):1706-1715.

  4. Zerze GH, Mittal J, Best RB. Diffusive Dynamics of Contact Formation in Disordered Polypeptides. Phys Rev Lett. 2016;116(6):068102.

  5. Best RB, Hummer G. Microscopic interpretation of folding ϕ-values using the transition path ensemble. Proc Natl Acad Sci U S A. 2016;113(12):3263-8.


This page was last updated on February 28th, 2019