
Quan Yuan, Ph.D.
Stadtman Investigator
Dendrite Morphogenesis and Plasticity Unit
NINDS
Research Topics
Proper functions of neuronal circuits rely on the fidelity of their assembly, while adaptive modifications are also essential. Our research objectives are to understand how experience and genetic programming interact to shape the structural and functional connectivity during brain development.
Our work revealed visual experience-induced homeostatic structural plasticity regulating dendrite size in the developing Drosophila larval visual circuit. In contrast to the long-standing belief that the fly brain is hard-wired, our studies illustrated striking homeostatic structural adaptations that contribute to the regulation of dendrite development. Conceptually similar to the homeostatic regulation of synaptic strength and efficacy, homeostatic structural plasticity demonstrates a persistent impact on neuronal intrinsic excitability and circuit properties but remains largely uncharacterized. Taking advantage of the exceptional optical and genetic accessibility of the larval visual circuit, we performed large scale genetic screens and analyzed candidate genes using in vivo imaging studies. In combination with cell-specific RNA-seq analyses and optical functional recordings, our genetic studies offer insights into the cellular and molecular mechanisms underlying structural plasticity during development.
The Drosophila system allows rapid identification and systematic analyses of novel molecular pathways using anatomical, physiological and behavioral approaches. Currently, we are performing experiments to: identify the molecular machinery regulating dendrite morphogenesis and structural plasticity; determine cellular mechanisms mediating visually-guided behaviors in Drosophila larvae; and investigate the functional consequences of deficits in homeostatic neuronal plasticity.
Biography
Selected Publications
-
Dombrovski M, Kim A, Poussard L, Vaccari A, Acton S, Spillman E, Condron B, Yuan Q. A Plastic Visual Pathway Regulates Cooperative Behavior in Drosophila Larvae. Curr Biol. 2019;29(11):1866-1876.e5.
-
Yin J, Gibbs M, Long C, Rosenthal J, Kim HS, Kim A, Sheng C, Ding P, Javed U, Yuan Q. Transcriptional Regulation of Lipophorin Receptors Supports Neuronal Adaptation to Chronic Elevations of Activity. Cell Rep. 2018;25(5):1181-1192.e4.
-
Sheng C, Javed U, Gibbs M, Long C, Yin J, Qin B, Yuan Q. Experience-dependent structural plasticity targets dynamic filopodia in regulating dendrite maturation and synaptogenesis. Nat Commun. 2018;9(1):3362.
-
Yin J, Yuan Q. Structural homeostasis in the nervous system: a balancing act for wiring plasticity and stability. Front Cell Neurosci. 2014;8:439.
-
Yuan Q, Song Y, Yang CH, Jan LY, Jan YN. Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nat Neurosci. 2014;17(1):81-8.
Related Scientific Focus Areas
-
-
-
-
-
Molecular Biology and Biochemistry
View additional Principal Investigators in Molecular Biology and Biochemistry
This page was last updated on May 16th, 2019