Laufey Amundadottir, Ph.D.

Senior Investigator

Laboratory of Translational Genomics

NCI/DCEG

9615 Medical Center Drive
Room CRL/3118
Rockville, MD 20850

240-760-6454

amundadottirl@mail.nih.gov

Research Topics

Dr. Laufey Amundadottir leads genetic, genomic and molecular biology studies that collectively aim at better understanding inherited predisposition to pancreatic cancer, and the molecular mechanisms that underlie risk.

Major advances have occurred in the last 10-15 years in our understanding of the genetics of common diseases. Genome-wide association studies (GWAS) in large case-control and cohort studies, as well as targeted and whole-genome sequencing (WGS) studies in individuals and families at increased risk of disease, have provided new insights into the inherited factors that contribute to risk of developing cancer.

Genetics of Pancreatic Cancer

Dr. Amundadottir co-leads gene mapping efforts within the Pancreatic Cancer Cohort Consortium (PanScan), conducted within the framework of the NCI-sponsored Cohort Consortium. Collaborative efforts are conducted with the Pancreatic Cancer Case Control Consortium (PanC4), the PANcreatic Disease ReseArch (PANDoRA) Consortium, the European Study on Pancreatic Cancer Genetics and Epidemiology (PanGen-EU). The aim of these large international studies is to identify genetic factors that contribute to the risk of pancreatic cancer. Four GWAS phases have already been performed in close to 12,000 case and 17,000 control subjects from over 30 cohort and case-control studies mainly from the U.S. and Europe. This work has resulted in the discovery of twenty common susceptibility loci for pancreatic cancer. Further GWAS phases in U.S., European and Asian pancreatic cancer case-control and cohort studies are underway, as well as WGS studies in African American pancreatic cancer cases and controls from the PanScan and PanC4 consortia.

Functional Characterization of Pancreatic Cancer Risk Loci

Dr. Amundadottir’s laboratory conducts fine-mapping of risk loci identified in PanScan and collaborative gene mapping efforts, as well as genomic, molecular and cell biology wet-lab based studies to uncover functional variants at each locus and unravel the mechanism by which they influence risk of pancreatic cancer. This works involves genetic, genomic and epigenomic approaches, including: 1) Imputation of GWAS datasets using various approaches and reference datasets, 2) Mapping noncoding gene regulatory elements and chromatin interactions across the pancreatic genome, 3) Expression quantitative trait locus (eQTL) analyses and Transcriptome Wide Association Studies (TWAS) to investigate the genetics of gene expression in normal and tumor derived pancreatic tissue samples, 4) Sequence and CRISPR-based analysis of noncoding gene regulatory element activity, and 5) Targeted functional analyses at specific pancreatic cancer susceptibility loci. This includes detailed investigations of noncoding gene regulatory element function, transcriptional regulation and gene/protein function with the aim of connecting pancreatic cancer risk variants to target genes and molecular phenotypes to explain the underlying biology of the risk at each locus.

Noncoding Pancreatic Cancer Driver Mutations

As an extension to their extensive genetic and genomic studies in pancreatic tissue samples, Dr. Amundadottir and her team have recently started investigating noncoding somatic mutations as drivers of pancreatic cancer, using large WGS datasets from pancreatic tumors and their well annotated epigenetic datasets mapping noncoding gene regulatory elements in normal and tumor derived pancreatic tissues.

Biography

Dr. Amundadottir received a Ph.D. in cell biology in 1995 from Georgetown University in Washington, D.C., and then conducted her postdoctoral training in the Department of Genetics at Harvard Medical School in Boston, Massachusetts. She joined deCODE Genetics in Iceland in 1998 as the Head of the Division of Cancer Genetics, where she led genome-wide linkage and association efforts in various cancers. Dr. Amundadottir joined the NCI in 2007 and became a tenure-track investigator in the Laboratory of Translational Genomics in 2008. She was awarded scientific tenure by the NIH and appointed senior investigator in 2017. Dr. Amundadottir has been recognized for her research contributions at the National Cancer Institute with several Intramural Research Awards, a Center of Excellence in Integrative Cancer Biology and Genomics (CEICBG) Award, and she received the NCI’s Women Scientist Advisors (WSA) Mentoring and Leadership Award in 2019.

Selected Publications

  1. Jia J, Parikh H, Xiao W, Hoskins JW, Pflicke H, Liu X, Collins I, Zhou W, Wang Z, Powell J, Thorgeirsson SS, Rudloff U, Petersen GM, Amundadottir LT. An integrated transcriptome and epigenome analysis identifies a novel candidate gene for pancreatic cancer. BMC Med Genomics. 2013;6:33.

  2. Wang Z, Zhu B, Zhang M, Parikh H, Jia J, Chung CC, Sampson JN, Hoskins JW, Hutchinson A, Burdette L, Ibrahim A, Hautman C, Raj PS, Abnet CC, Adjei AA, Ahlbom A, Albanes D, Allen NE, Ambrosone CB, Aldrich M, Amiano P, Amos C, Andersson U, Andriole G Jr, Andrulis IL, Arici C, Arslan AA, Austin MA, Baris D, Barkauskas DA, Bassig BA, Beane Freeman LE, Berg CD, Berndt SI, Bertazzi PA, Biritwum RB, Black A, Blot W, Boeing H, Boffetta P, Bolton K, Boutron-Ruault MC, Bracci PM, Brennan P, Brinton LA, Brotzman M, Bueno-de-Mesquita HB, Buring JE, Butler MA, Cai Q, Cancel-Tassin G, Canzian F, Cao G, Caporaso NE, Carrato A, Carreon T, Carta A, Chang GC, Chang IS, Chang-Claude J, Che X, Chen CJ, Chen CY, Chen CH, Chen C, Chen KY, Chen YM, Chokkalingam AP, Chu LW, Clavel-Chapelon F, Colditz GA, Colt JS, Conti D, Cook MB, Cortessis VK, Crawford ED, Cussenot O, Davis FG, De Vivo I, Deng X, Ding T, Dinney CP, Di Stefano AL, Diver WR, Duell EJ, Elena JW, Fan JH, Feigelson HS, Feychting M, Figueroa JD, Flanagan AM, Fraumeni JF Jr, Freedman ND, Fridley BL, Fuchs CS, Gago-Dominguez M, Gallinger S, Gao YT, Gapstur SM, Garcia-Closas M, Garcia-Closas R, Gastier-Foster JM, Gaziano JM, Gerhard DS, Giffen CA, Giles GG, Gillanders EM, Giovannucci EL, Goggins M, Gokgoz N, Goldstein AM, Gonzalez C, Gorlick R, Greene MH, Gross M, Grossman HB, Grubb R 3rd, Gu J, Guan P, Haiman CA, Hallmans G, Hankinson SE, Harris CC, Hartge P, Hattinger C, Hayes RB, He Q, Helman L, Henderson BE, Henriksson R, Hoffman-Bolton J, Hohensee C, Holly EA, Hong YC, Hoover RN, Hosgood HD 3rd, Hsiao CF, Hsing AW, Hsiung CA, Hu N, Hu W, Hu Z, Huang MS, Hunter DJ, Inskip PD, Ito H, Jacobs EJ, Jacobs KB, Jenab M, Ji BT, Johansen C, Johansson M, Johnson A, Kaaks R, Kamat AM, Kamineni A, Karagas M, Khanna C, Khaw KT, Kim C, Kim IS, Kim JH, Kim YH, Kim YC, Kim YT, Kang CH, Jung YJ, Kitahara CM, Klein AP, Klein R, Kogevinas M, Koh WP, Kohno T, Kolonel LN, Kooperberg C, Kratz CP, Krogh V, Kunitoh H, Kurtz RC, Kurucu N, Lan Q, Lathrop M, Lau CC, Lecanda F, Lee KM, Lee MP, Le Marchand L, Lerner SP, Li D, Liao LM, Lim WY, Lin D, Lin J, Lindstrom S, Linet MS, Lissowska J, Liu J, Ljungberg B, Lloreta J, Lu D, Ma J, Malats N, Mannisto S, Marina N, Mastrangelo G, Matsuo K, McGlynn KA, McKean-Cowdin R, McNeill LH, McWilliams RR, Melin BS, Meltzer PS, Mensah JE, Miao X, Michaud DS, Mondul AM, Moore LE, Muir K, Niwa S, Olson SH, Orr N, Panico S, Park JY, Patel AV, Patino-Garcia A, Pavanello S, Peeters PH, Peplonska B, Peters U, Petersen GM, Picci P, Pike MC, Porru S, Prescott J, Pu X, Purdue MP, Qiao YL, Rajaraman P, Riboli E, Risch HA, Rodabough RJ, Rothman N, Ruder AM, Ryu JS, Sanson M, Schned A, Schumacher FR, Schwartz AG, Schwartz KL, Schwenn M, Scotlandi K, Seow A, Serra C, Serra M, Sesso HD, Severi G, Shen H, Shen M, Shete S, Shiraishi K, Shu XO, Siddiq A, Sierrasesumaga L, Sierri S, Loon Sihoe AD, Silverman DT, Simon M, Southey MC, Spector L, Spitz M, Stampfer M, Stattin P, Stern MC, Stevens VL, Stolzenberg-Solomon RZ, Stram DO, Strom SS, Su WC, Sund M, Sung SW, Swerdlow A, Tan W, Tanaka H, Tang W, Tang ZZ, Tardon A, Tay E, Taylor PR, Tettey Y, Thomas DM, Tirabosco R, Tjonneland A, Tobias GS, Toro JR, Travis RC, Trichopoulos D, Troisi R, Truelove A, Tsai YH, Tucker MA, Tumino R, Van Den Berg D, Van Den Eeden SK, Vermeulen R, Vineis P, Visvanathan K, Vogel U, Wang C, Wang C, Wang J, Wang SS, Weiderpass E, Weinstein SJ, Wentzensen N, Wheeler W, White E, Wiencke JK, Wolk A, Wolpin BM, Wong MP, Wrensch M, Wu C, Wu T, Wu X, Wu YL, Wunder JS, Xiang YB, Xu J, Yang HP, Yang PC, Yatabe Y, Ye Y, Yeboah ED, Yin Z, Ying C, Yu CJ, Yu K, Yuan JM, Zanetti KA, Zeleniuch-Jacquotte A, Zheng W, Zhou B, Mirabello L, Savage SA, Kraft P, Chanock SJ, Yeager M, Landi MT, Shi J, Chatterjee N, Amundadottir LT. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Hum Mol Genet. 2014;23(24):6616-33.

  3. Wolpin BM, Rizzato C, Kraft P, Kooperberg C, Petersen GM, Wang Z, Arslan AA, Beane-Freeman L, Bracci PM, Buring J, Canzian F, Duell EJ, Gallinger S, Giles GG, Goodman GE, Goodman PJ, Jacobs EJ, Kamineni A, Klein AP, Kolonel LN, Kulke MH, Li D, Malats N, Olson SH, Risch HA, Sesso HD, Visvanathan K, White E, Zheng W, Abnet CC, Albanes D, Andreotti G, Austin MA, Barfield R, Basso D, Berndt SI, Boutron-Ruault MC, Brotzman M, Büchler MW, Bueno-de-Mesquita HB, Bugert P, Burdette L, Campa D, Caporaso NE, Capurso G, Chung C, Cotterchio M, Costello E, Elena J, Funel N, Gaziano JM, Giese NA, Giovannucci EL, Goggins M, Gorman MJ, Gross M, Haiman CA, Hassan M, Helzlsouer KJ, Henderson BE, Holly EA, Hu N, Hunter DJ, Innocenti F, Jenab M, Kaaks R, Key TJ, Khaw KT, Klein EA, Kogevinas M, Krogh V, Kupcinskas J, Kurtz RC, LaCroix A, Landi MT, Landi S, Le Marchand L, Mambrini A, Mannisto S, Milne RL, Nakamura Y, Oberg AL, Owzar K, Patel AV, Peeters PH, Peters U, Pezzilli R, Piepoli A, Porta M, Real FX, Riboli E, Rothman N, Scarpa A, Shu XO, Silverman DT, Soucek P, Sund M, Talar-Wojnarowska R, Taylor PR, Theodoropoulos GE, Thornquist M, Tjønneland A, Tobias GS, Trichopoulos D, Vodicka P, Wactawski-Wende J, Wentzensen N, Wu C, Yu H, Yu K, Zeleniuch-Jacquotte A, Hoover R, Hartge P, Fuchs C, Chanock SJ, Stolzenberg-Solomon RS, Amundadottir LT. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46(9):994-1000.

  4. Jia J, Bosley AD, Thompson A, Hoskins JW, Cheuk A, Collins I, Parikh H, Xiao Z, Ylaya K, Dzyadyk M, Cozen W, Hernandez BY, Lynch CF, Loncarek J, Altekruse SF, Zhang L, Westlake CJ, Factor VM, Thorgeirsson S, Bamlet WR, Hewitt SM, Petersen GM, Andresson T, Amundadottir LT. CLPTM1L promotes growth and enhances aneuploidy in pancreatic cancer cells. Cancer Res. 2014;74(10):2785-95.

  5. Hoskins JW, Jia J, Flandez M, Parikh H, Xiao W, Collins I, Emmanuel MA, Ibrahim A, Powell J, Zhang L, Malats N, Bamlet WR, Petersen GM, Real FX, Amundadottir LT. Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. Carcinogenesis. 2014;35(12):2670-8.


This page was last updated on July 23rd, 2021