Kandice Tanner, Ph.D.

Stadtman Investigator

Laboratory of Cell Biology


Building 37, Room 2132
Bethesda, MD 20892-4256



Research Topics

We seek to link the lessons learned from epithelial morphogenesis to dissect the mechanisms by which tumor cells can colonize distant organs by directly visualizing single cell dynamics in thick tissues. By treating  newly-formed neoplasms as new organs, we aim to dissect the physico-chemical processes involved in this de novo “tumor organogenesis”. Our analysis of epithelial morphogenesis using live imaging has revealed that cells can undergo three-dimensional (3D) specific motility to assemble into multicellular tissues. Our group seeks to uncover how adult cells sense a change in dimension and then conveys that to its progeny to understand the mechanisms by which an adult cell can use these different motilities to remodel existing tissue architecture. To quantify minute forces, the laboratory utilizes a battery of biophysical and molecular approaches: optical tweezers, multi-photon microscopy, sub-cellular protein visualization in fixed and living cells and tissues, fluctuation correlation data analysis, and mathematical modeling of complex cell dynamics within thick tissues. Furthermore, we link in vitro findings to clinically relevant problems by studying animal models.


Kandice Tanner received her doctoral degree in Physics at the University of Illinois, Urbana-Champaign under Professor Enrico Gratton. She completed post-doctoral training at the University of California, Irvine specializing in dynamic imaging of thick tissues. She then became a Department of Defense Breast Cancer Post-doctoral fellow jointly at University of California, Berkeley and Lawrence Berkeley National Laboratory under Dr. Mina J. Bissell. Dr. Tanner joined the National Cancer Institute as a Stadtman Tenure-Track Investigator in July, 2012, where she integrates concepts from molecular biophysics and cell biology to learn how cells and tissues sense and respond to their physical microenvironment, and to thereby design therapeutics and cellular biotechnology. For her work, she has been awarded the 2013 National Cancer Institute Director’s Intramural Innovation Award, the 2015 NCI Leading Diversity award, 2016 Federal Technology Transfer Award, the 2016 Young Fluorescence Investigator award from the Biophysical Society and named as a Young Innovator in Cellular and Molecular Bioengineering, which highlight her scientific accomplishments and service to the greater intramural NIH and extramural scientific community. She also maintains strong connections with the extramural community through service as an editorial board member of Scientific Reports and as a review editor for Frontiers in Cell and Development Biology. She currently serves on the Membership Committee of the American Society of Cell Biology, the Minority Affairs Committee of the Biophysical Society and is a Member at large for the Division of Biological Physics of the American Physical Society.

Selected Publications

  1. Kim J, Staunton JR, Tanner K. Independent Control of Topography for 3D Patterning of the ECM Microenvironment. Adv Mater. 2016;28(1):132-7.

  2. Blehm BH, Devine A, Staunton JR, Tanner K. In vivo tissue has non-linear rheological behavior distinct from 3D biomimetic hydrogels, as determined by AMOTIV microscopy. Biomaterials. 2016;83:66-78.

  3. Tanner K, Gottesman MM. Beyond 3D culture models of cancer. Sci Transl Med. 2015;7(283):283ps9.

  4. Blehm BH, Jiang N, Kotobuki Y, Tanner K. Deconstructing the role of the ECM microenvironment on drug efficacy targeting MAPK signaling in a pre-clinical platform for cutaneous melanoma. Biomaterials. 2015;56:129-39.

  5. Tanner K, Mori H, Mroue R, Bruni-Cardoso A, Bissell MJ. Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc Natl Acad Sci U S A. 2012;109(6):1973-8.

This page was last updated on June 15th, 2017