Jeff H. Duyn, Ph.D.

Senior Investigator

Advanced MRI Section


Building 10, Room B1D724
10 Center Drive
Bethesda, MD 20814


Research Topics

In addition to providing structural information, MRI has the potential to non-invasively map physiologic parameters and function. Our research focuses on optimally exploiting this potential by investigating the mechanisms behind MRI contrast, exploring avenues to manipulate the contrast, and optimizing MRI data acquisition and analysis to achieve optimum sensitivity, resolution, reliability, and accuracy. Specific aims are the development of MRI techniques for the measurements of structural anatomy, tissue metabolism, tissue perfusion, and the spatial distribution of brain activity. Recent work has focused on high field MRI technology, the magnetic properties of brain tissue, and the study of spontaneous brain activity.

Website of the Advanced MRI section of LFMI:
Website of the Laboratory of Functional and Molecular Imaging:


Dr. Duyn received his M.Sc. and Ph.D. degrees in physics at the University of Delft, Holland where he was involved with the development of X-ray diffraction techniques, as well as the early development of magnetic resonance imaging (MRI). During his postdoctoral assignments at the University of California, San Francisco, and at NIH, his research focused on the study of human brain physiology, as measured by spectroscopic and functional MRI techniques. Dr. Duyn moved to NINDS in 2000.

Selected Publications

  1. Chang C, Leopold DA, Schölvinck ML, Mandelkow H, Picchioni D, Liu X, Ye FQ, Turchi JN, Duyn JH. Tracking brain arousal fluctuations with fMRI. Proc Natl Acad Sci U S A. 2016;113(16):4518-23.

  2. van Gelderen P, Jiang X, Duyn JH. Rapid measurement of brain macromolecular proton fraction with transient saturation transfer MRI. Magn Reson Med. 2016.

  3. Gudino N, Duan Q, de Zwart JA, Murphy-Boesch J, Dodd SJ, Merkle H, van Gelderen P, Duyn JH. Optically controlled switch-mode current-source amplifiers for on-coil implementation in high-field parallel transmission. Magn Reson Med. 2016;76(1):340-9.

  4. Liu X, Yanagawa T, Leopold DA, Fujii N, Duyn JH. Robust Long-Range Coordination of Spontaneous Neural Activity in Waking, Sleep and Anesthesia. Cereb Cortex. 2015;25(9):2929-38.

  5. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045-60.

This page was last updated on August 31st, 2017