
Edward S. Giniger, Ph.D.
Senior Investigator
Axon Guidance and Neural Connectivity Section
NINDS
Research Topics
Biography
Dr Giniger received his BS from Yale University (1979) and his Ph.D. from Harvard (1988), the latter studying the yeast transcriptional activator, GAL4, with Dr Mark Ptashne. Dr Giniger then turned to postdoctoral work with Dr Yuh Nung Jan at UCSF, where he initiated studies of axon guidance in Drosophila. Dr Giniger continued this work while on the faculty of the Fred Hutchinson Cancer Research Center, in Seattle, WA, prior to joining NINDS as an Investigator in 2004. Dr Giniger continues to study the mechanism of axon guidance, using in vivo live imaging, biochemistry and genetics to investigate how cytoplasmic signaling pathways interpret external guidance cues to direct axon growth. In recent years, his lab has also begun to investigate adult-onset neurodegenerative diseases. In particular, he seeks to understand how aging interacts with defects in the homeostatic machineries of the neuron, and of the organism, to cause progressive disruption of neural circuits and neuron loss.
Selected Publications
- Scott AW, Wodrich APK, Chaouhan HS, Shukla AK, Johnson K, McQueen PG, Giniger E. Dying occurs as a defined molecular progression in Drosophila rather than as nonspecific physiological collapse. iScience. 2025;28(8):113115.
- Shukla AK, Johnson K, Giniger E. Common features of aging fail to occur in Drosophila raised without a bacterial microbiome. iScience. 2021;24(7):102703.
- Shukla AK, Spurrier J, Kuzina I, Giniger E. Hyperactive Innate Immunity Causes Degeneration of Dopamine Neurons upon Altering Activity of Cdk5. Cell Rep. 2019;26(1):131-144.e4.
- Clarke A, McQueen PG, Fang HY, Kannan R, Wang V, McCreedy E, Buckley T, Johannessen E, Wincovitch S, Giniger E. Dynamic morphogenesis of a pioneer axon in Drosophila and its regulation by Abl tyrosine kinase. Mol Biol Cell. 2020;31(6):452-465.
- Chandrasekaran A, Clarke A, McQueen P, Fang HY, Papoian GA, Giniger E. Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones. Mol Biol Cell. 2022;33(11):ar92.
Related Scientific Focus Areas
This page was last updated on Tuesday, August 5, 2025