Doris K. Wu, Ph.D.

Senior Investigator

Section on Sensory Cell Regeneration and Development

NIDCD

Porter Neuroscience Research Center, Room 1D-824
35 Convent Drive
Bethesda, MD 20892

301-402-4214

wud@nidcd.nih.gov

Research Topics

We rely on the inner ear, an intricate sensory organ, to hear and to maintain balance. Formation of this organ is a complex process that occurs in a precise temporal sequence. This temporal sequence is largely initiated by cues from tissues surrounding the ear primordium, followed by a cascade of molecular events within the ear tissue. Any missteps in this process will most likely result in some degree of dysfunction affecting the abilities to hear and maintain balance.

The goal of the laboratory is to identify the molecular mechanisms underlying the formation of this complex structure. Using mouse, chicken, and zebrafish as animal models, we focus on identifying the external cues that instruct the ear rudiment about its positional information—for example, where to form the cochlea (hearing apparatus) versus the semi-circular canals (non-sensory vestibular structures). Another focus of the laboratory is to determine the cascades of events induced by external cues, which specify all aspects of inner ear development including the three primary cell types (neural, sensory, and nonsensory) of the ear rudiment and the identity of each sensory structure and the types of sensory hair cells and polarity within. By understanding the normal development of the inner ear at a molecular level, we may help to design better strategies to alleviate hearing and balancing disorders.

Biography

  • Ph.D., UCLA

Selected Publications

  1. Bok J, Raft S, Kong KA, Koo SK, Dräger UC, Wu DK. Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proc Natl Acad Sci U S A. 2011;108(1):161-6.

  2. Bok J, Zenczak C, Hwang CH, Wu DK. Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proc Natl Acad Sci U S A. 2013;110(34):13869-74.

  3. Evsen L, Sugahara S, Uchikawa M, Kondoh H, Wu DK. Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by neurogenin1 and neurod1. J Neurosci. 2013;33(9):3879-90.

  4. Jiang T, Kindt K, Wu DK. Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. Elife. 2017;6.

  5. Deng X, Wu DK. Temporal coupling between specifications of neuronal and macular fates of the inner ear. Dev Biol. 2016;414(1):21-33.


This page was last updated on August 25th, 2017