Amy Hauck Newman, Ph.D.

Senior Investigator

Molecular Targets and Medications Discovery Branch, Medicinal Chemistry Section

NIDA

333 Cassell Drive
Room 3444
Baltimore, MD 21224

443-740-2887

anewman@intra.nida.nih.gov

Research Topics

Our research effort is focused on the design and synthesis of novel ligands to study the function of selected G-protein coupled receptors and monoamine transporters in the central nervous system. Highly selective compounds are designed and synthesized for characterization of these molecular targets and to develop structure-activity relationships. In addition, specific tools such as fluorescent and radiolabeled ligands are synthesized for receptor or transporter structure-function studies. My research program is currently studying the dopamine and serotonin transport systems and the dopamine D2 receptor family (D2/D3) through the design, synthesis and pharmacological evaluation of novel ligands. The combination of state of the art synthetic organic chemistry techniques with molecular modeling and interpretation of pharmacological data has resulted in the discovery of important molecular probes for studying these neurochemical targets. It is envisioned that, ultimately, this multidisciplinary approach will provide new leads toward the development of potential pharmacotherapeutic agents for the treatment of addiction.

Selected Publications

  1. Newman AH, Beuming T, Banala AK, Donthamsetti P, Pongetti K, LaBounty A, Levy B, Cao J, Michino M, Luedtke RR, Javitch JA, Shi L. Molecular determinants of selectivity and efficacy at the dopamine D3 receptor. J Med Chem. 2012;55(15):6689-99.

  2. Loland CJ, Mereu M, Okunola OM, Cao J, Prisinzano TE, Mazier S, Kopajtic T, Shi L, Katz JL, Tanda G, Newman AH. R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol Psychiatry. 2012;72(5):405-13.

  3. Kumar V, Bonifazi A, Ellenberger MP, Keck TM, Pommier E, Rais R, Slusher BS, Gardner E, You ZB, Xi ZX, Newman AH. Highly Selective Dopamine D3 Receptor (D3R) Antagonists and Partial Agonists Based on Eticlopride and the D3R Crystal Structure: New Leads for Opioid Dependence Treatment. J Med Chem. 2016;59(16):7634-50.

  4. Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science. 2010;330(6007):1091-5.

  5. Cao J, Slack RD, Bakare OM, Burzynski C, Rais R, Slusher BS, Kopajtic T, Bonifazi A, Ellenberger MP, Yano H, He Y, Bi GH, Xi ZX, Loland CJ, Newman AH. Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors. J Med Chem. 2016;59(23):10676-10691.


This page was last updated on September 1st, 2017