Alexander J. Sodt, Ph.D.

Stadtman Investigator

Unit on Membrane Chemical Physics


9 1E116


Research Topics

Modeling and computational tool development to study the biophysics of the membrane

Research in the Unit on Membrane Chemical Physics is focused on modeling and characterizing how lipids (and the membranes they constitute) affect biological processes related to disease. The plasma membrane is both a chemical and informational barrier to the cell. Protein receptors are embedded in the membrane and change conformation  in order to receive information from the body and nearby cells. Additionally, these receptors can be internalized by processes that must reshape the membrane. The membrane is a fascinating target of study because it is both molecular and material in nature. As a molecular assembly it is formed from a plethora of nano-scopic protein and lipid units each with physical-chemical properties. As a material it has rigidity and work must be applied to bend it. The interplay between these identities is rich with possibilities for biological function and is the main target of work in the Unit.

Current work fits into two categories. First, hypothesis driven research about how the molecular identity of the constituents of the membrane affect material properties. The main technique of the Unit is to apply new methods to detailed computational molecular simulations. From these simulations both material properties and the effect of the membrane on protein behavior can be inferred. Second, the lab is developing software that can be used to apply new biophysics to disease-relevant problems by both the Unit, and the scientific community.  


Dr. Sodt received degrees in chemistry and physics (B.S.) from the University of Washington, Seattle, performing undergraduate research with Prof. Bart Kahr. He then electronic structure theory and quantum chemistry with Prof. Martin Head-Gordon at the University of California, Berkeley, earning his Ph.D. in 2007. Following a post-doc with Prof. Teresa Head-Gordon developing coarse-grained models of lipids and transmembrane protein structure, he moved to the NHLBI of the NIH to study the properties of lipids with Dr. Richard Pastor. 

Selected Publications

  1. Sodt AJ, Venable RM, Lyman E, Pastor RW. Nonadditive Compositional Curvature Energetics of Lipid Bilayers. Phys Rev Lett. 2016;117(13):138104.

  2. Beaven AH, Maer AM, Sodt AJ, Rui H, Pastor RW, Andersen OS, Im W. Gramicidin A Channel Formation Induces Local Lipid Redistribution I: Experiment and Simulation. Biophys J. 2017;112(6):1185-1197.

  3. Sodt AJ, Beaven AH, Andersen OS, Im W, Pastor RW. Gramicidin A Channel Formation Induces Local Lipid Redistribution II: A 3D Continuum Elastic Model. Biophys J. 2017;112(6):1198-1213.

  4. Chlanda P, Mekhedov E, Waters H, Sodt A, Schwartz C, Nair V, Blank PS, Zimmerberg J. Palmitoylation contributes to membrane curvature in Influenza A virus assembly and hemagglutinin-mediated membrane fusion. J Virol. 2017.

  5. Gurnev PA, Roark TC, Petrache HI, Sodt AJ, Bezrukov SM. Cation-Selective Channel Regulated by Anions According to Their Hofmeister Ranking. Angew Chem Int Ed Engl. 2017;56(13):3506-3509.

This page was last updated on August 4th, 2017